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SUMMARY

Perceptual inference is biased by foreknowledge
about what is probable or possible. How prior expec-
tations are neurally represented during visual per-
ception, however, remains unknown. We used func-
tional magnetic resonance imaging to measure
brain activity in humans judging simple visual stimuli.
Perceptual decisions were either biased in favor of
a single alternative (A/�A decisions) or taken without
bias toward either choice (A/B decisions). Extrastri-
ate and anterior temporal lobe regions were more
active during A/�A than A/B decisions, suggesting
multiple representations of prior expectations within
the visual hierarchy. Forward connectivity was in-
creased when expected and observed perception
diverged (‘‘prediction error’’ signals), whereas prior
expectations fed backward from higher to lower
regions. Finally, the coincidence between expected
and observed perception activated orbital prefrontal
regions, perhaps reflecting the reinforcement of prior
expectations. These data support computational and
quantitative models proposing that a visual percept
emerges from converging bottom-up and top-down
signals.

INTRODUCTION

At the heart of psychophysical theory is the notion that there ex-

ists a metric linking a physical stimulus with internal percept (Ste-

vens, 1957). Classical models of perceptual decisions incorpo-

rate this feedforward model, in that physical sensory input is

serially accumulated toward a threshold or criterion for response

(Ratcliff, 1978), presumably as stimulus information feeds for-

ward through sensory neocortex and on to the higher brain (Hee-

keren et al., 2004; Kim and Shadlen, 1999). However, perception

is also shaped by reciprocal interactions between an internal

mental state and the external information impinging upon it.

This reciprocity is evident in a range of neurocognitive phenom-

ena in which evoked cortical responses are modulated by prior

expectations or motivational states. For example, in the visual

domain, prior contextual information is responsible for the
336 Neuron 59, 336–347, July 31, 2008 ª2008 Elsevier Inc.
elementary constancies that influence our perception of shape

and color (Land, 1977), innate statistical biases in the processing

of natural images (Kersten et al., 2004), as well as the effects of

learning (Gilbert et al., 2001), local environmental context (Bar,

2004; Palmer, 1975), or task set (O’Craven et al., 1999) on the

processing of visual objects and scenes.

Although it is well established that prior information influences

perceptual inference, consensus has yet to emerge on how this

finding should be incorporated into accounts of the decision pro-

cess. Moreover, while neuroscientists have begun to character-

ize the forward flow of neural information during decisions with

two visual alternatives (Heekeren et al., 2004; Kim and Shadlen,

1999), much less is known about the brain mechanisms that un-

derpin the ‘‘top-down’’ influences on signal detection and object

recognition (Frith and Dolan, 1997; Gilbert and Sigman, 2007;

Kveraga et al., 2007b). Several quantitative and computational

theories have proposed that backward (or ‘‘reentrant’’) connec-

tions within the ventral stream allow prior information to flow

back to visual regions and guide object decisions as they unfold

(Deco and Rolls, 2005; Friston, 2003; Grossberg, 1999; Mum-

ford, 1992; Ullman, 1995). For example, one recent model de-

scribes how a percept evolves as sensory information travels

through successive stages of a hierarchically organized cortical

architecture (Friston, 2003; Mumford, 1992). Under this frame-

work—known as ‘‘predictive coding’’—the presence of specific

prior information relevant to a perceptual decision allows the

generation and representation of conditional expectations at

multiple hierarchical levels in sensory neocortex—the most likely

cause of observed sensory information given (or conditioned

upon) that input. Expectation-related information is projected

backward to the immediately preceding cortical level via reen-

trant pathways, such that forward-flowing sensory input is inter-

preted at each cortical stage within the context of a prior expec-

tation (Figure 1A). Quantitatively, one can thus consider these

representations (blue circles in Figure 1A) to be empirical priors

for a Bayesian inference process occurring at the hierarchical

level immediately below (Friston, 2005).

Predictive coding is useful because it allows us to formulate

some clear hypotheses about how visual regions should be-

have during rudimentary decisions about sensory signals. Spe-

cifically, evoked neural responses (and effective connectivity)

within the sensory neocortex should dissociate decisions in-

formed by specific prior information from judgments that re-

quire an unbiased discrimination between two alternatives. To

address this hypothesis, we devised a paradigm that draws
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Figure 1. Theory, Paradigm, and Behavioral

Data

(A) According to predictive coding, each hierarchi-

cal layer of a sensory system contains units for er-

ror prediction (red circles) and units for represent-

ing prior expectations (blue circles). Information

flowing forward during perception (red arrows)

evokes a response in error prediction units when

it does not coincide with prior expectations. Infor-

mation about expectations flows backward, gat-

ing sensory input at each cortical stage (blue

arrows). Note similarities with Friston (2005).

(B) Stimuli. Instruction cues (left column) were gray

circles crossed by either a red line and a blue line

separated by 60� (A/B condition, top row) or a gray

circle crossed by a single green line (A/�A condi-

tion, middle and bottom rows). Imperative stimuli

were contrast-modulated Gabor patches embed-

ded in visual noise. In the A/B condition, Gabors

were always oriented either as the red line (50%

trials) or the blue line (50% trials); in the A/�A con-

dition, Gabors were either oriented as the green

line (match trials, 50%) or with a 60� deviation

from the orientation defined by the green line (non-

match trials, 50%). In separate versions of the

A/�A task, either one or two distracters could

appear in a single block.

(C) Task sequence. The instruction cue was fol-

lowed by nine imperative stimuli. Subjects re-

sponded with a button press to each stimulus.

(D) Reaction time data. Reaction times for match

(light gray bars), A/B (gray bars), and nonmatch

(dark gray bars) trials. For A/�A blocks (match

and nonmatch), bars marked with 1 and 2 indicate the number of distracters. For A/B blocks, the response A marks that made with the same finger as a match

on the A/�A blocks (counterbalanced across subjects). Error bars indicate SEM.

(E) Summary of regions and abbreviations. A large number of regions are discussed in this report. To help the reader understand our results, we include a sche-

matic diagram of the main regions discussed in the text, indicated by their relevant abbreviation (V1c, primary visual cortex; FG, fusiform gyrus; ITG, inferior tem-

poral gyrus; STG, superior temporal gyrus; OFC, orbitofrontal cortex; vmPFC, ventromedial prefrontal cortex). All regions except the vmPFC had corresponding

partners on the opposite hemisphere, which are not shown. Locations are approximate. Colors indicate the contrast with which the region was defined: red, non-

match > others; blue, A/�A > A/B; green, match > others; yellow, PPI connectivity with FG/MOG (see Results for details).
upon two tasks traditionally employed in visual psychophysics:

the presence/absence (or ‘‘yes/no’’) judgment and the forced-

choice categorization with two alternatives. Forced-choice dis-

crimination (here, A/B decisions) has often been characterized

as a race between two competing percepts that occurs without

prior bias toward one or the other and that is decided in a win-

ner-takes-all fashion at a downstream processing stage (Ratcl-

iff, 1978). Yes-no judgments (here, A/�A decisions), by con-

trast, have been modeled as a biased decision process in

which subjects confirm or disconfirm the match between an in-

ternal ‘‘perceptual template’’ and an external stimulus (Dosher

and Lu, 1999). We view A/�A decisions as a special case of

A/B decisions in which one perceptual alternative is repre-

sented in a privileged fashion, allowing perceptual inference

to be reduced to the computationally less burdensome task

of ‘‘matching’’ external sensory input to an internal template

(Dayan et al., 1995). In our task, simple visual stimuli (oriented

Gabor patches) were presented in two interleaved blocks,

one of which (the A/B condition) forced participants to discrim-

inate between two alternatives (i.e., is the orientation A or B?),

whereas another (the A/�A condition) explicitly required sub-

jects to match expected and observed information (i.e., is the
orientation A or not?). Because the A/B and A/�A tasks were

carefully tailored not to differ for bottom-up sensory input, we

reasoned that comparing brain activity on these two decision

tasks would reveal brain regions associated with the represen-

tation of conditional expectations—or, a ‘‘perceptual tem-

plate’’—during decisions about visual stimuli.

Predictive coding shares with many other theories the idea

that evoked cortical responses depend not only on the physical

nature of sensory stimulation but on the confluence of bottom-up

sensory input with top-down signals encoding prior expecta-

tions. Specifically, it proposes that cortical foci falling within

the relevant processing stream will respond more robustly

when there is a mismatch between the observed sensory signal

and the expected perceptual template; these population cortical

responses can thus be considered prediction error signals, and

a single solution for detection/recognition is only recovered

once this prediction error has been jointly eliminated at all levels

of the hierarchy (Friston, 2005). Here, we sought to identify pre-

diction error responses in visual regions by comparing nonmatch

(�A) trials, where expected and observed sensory information

are at odds, to all other trial types. According to predictive cod-

ing, such responses should be observed in visual regions
Neuron 59, 336–347, July 31, 2008 ª2008 Elsevier Inc. 337
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responsive to the stimulus dimension being judged—in our case,

angle of orientation (Friston et al., 2006).

Third, prior information during perceptual decisions should af-

fect not only the height of the evoked response in the sensory

neocortex but also the dynamic flow of neural information among

visual regions. In particular, it has been argued that expectation-

related information flows backward from higher to lower cortical

stages, whereas prediction error responses flow forward (Fris-

ton, 2005). We subjected this view to empirical scrutiny using

dynamic causal modeling (DCM) (Friston et al., 2003), which

models the elements of a brain network as a system governed

by causal mutual interactions with known inputs (experimental

parameters) and outputs (evoked neural data). DCM allowed

us to determine how expectation-related information flowed

within the ventral stream during decisions informed by prior

information (A/�A decisions).

Finally, how does the brain respond when a ‘‘match’’ has oc-

curred? Detecting a perceptual match is important not just to

prompt a rapid and efficient behavioral response but also be-

cause it allows the incentive value associated with the expecta-

tion to be adjusted appropriately, and the decision criterion to be

adjusted accordingly. We let this reasoning draw our hypotheses

concerning perceptual matching toward portions of the ventro-

medial prefrontal (vmPFC) and orbitofrontal cortices (OFC) previ-

ously implicated in reward expectation (Kringelbach, 2005),

decision making (Bechara et al., 1994; Wallis, 2007), and

top-down visual perception (Bar et al., 2006b; Kveraga et al.,

2007a; Summerfield et al., 2006). We thus tested our third

hypothesis, that the vmPFC and/or OFC are responsible for per-

ceptual matching—detecting the match between expected and

observed sensation—by searching for voxels that responded

uniquely to match (A) trials on A/�A blocks.

In summary, we hypothesized that (1) we would observe neural

prediction error and conditional expectation responses in visual

regions, (2) that effective connectivity between these regions

would be enhanced on decisions informed by prior information

(A/�A decisions), and (3) that neural correlates of perceptual

matching would be observed in the ventral prefrontal cortex.

Here, we confirm each of these three hypotheses, using voxel-

wise, functional, and effective connectivity analyses of functional

magnetic resonance imaging (fMRI) data obtained from healthy

human subjects performing a simple perceptual decision-mak-

ing task.

RESULTS

Both A/B and A/�A blocks comprised an instruction cue fol-

lowed by nine successive central, singly presented Gabor

patches with variable orientation, embedded in visual noise

(see Figures 1B–1D and Experimental Procedures). On A/B

blocks, the instruction cue comprised two oriented lines; sub-

jects discriminated whether the orientation of each subsequent

Gabor patch was the same as line A (button 1; 50% of trials) or

line B (button 2; 50% of trials). On A/�A blocks, a single oriented

line was shown at instruction; subjects determined whether each

subsequent Gabor patch matched that orientation (button 1;

50% of trials) or not (button 2; 50% of trials). A/�A blocks

included target trials interleaved with either a single type of
338 Neuron 59, 336–347, July 31, 2008 ª2008 Elsevier Inc.
distracter trial (i.e., nonmatching Gabor) or two types of distrac-

ter trial. This manipulation prevented subjects from using the

same discrimination strategy on A/B and A/�A blocks. All orien-

tations presented within a single block differed from each other

by 60�. We additionally varied the contrast of the Gabor patches,

allowing us to model the visibility of the stimuli (and thus the

perceptual demand of the task) as a separate factor.

Behavioral Results
Evidence that simply instructing subjects that one of two stimuli

was the ‘‘target’’ was sufficient to bias their judgments in favor of

that stimulus is provided by reaction time (RT) data (Figure 1D).

Although RTs were overall very well matched between A/B

blocks (729 ± 74 ms) and A/�A blocks with both one (725 ±

72 ms) and two (734 ± 78 ms) distracters (main effect of block,

p > 0.4), match trials were reliably faster than nonmatch trials

on A/�A blocks, including both those with one distracter (t(19) =

8.05, p < 1 3 10�7) and two distracters (t(19) = 8.09, p < 1 3

10�7). Indeed, taking A/B blocks as an RT baseline, A/�A match

trials were about 60 ms faster (one distracter: t(19) = 3.83, p <

0.002; two distracters: t(19) = 3.94, p < 1 3 10�4), and nonmatch

trials were about 40 ms slower (one distracter: t(19) = 3.31, p <

0.004; two distracters: t(19) = 4.98, p < 1 3 10�5) than responses

on A/B trials.

Further analyses indicated that A/�A blocks with one and two

distracters did not differ on any of these comparisons (all p

values > 0.1) nor was there a reliable interaction between number

of distracters (n = 1, n = 2) and trial type (match, nonmatch) (p >

0.5). This prompted us to collapse across the two types of A/�A

block for subsequent analyses of imaging data. Errors remained

relatively stable at �10% and did not differ between blocks or

trial type (all p values > 0.1); neither did sensitivity calculated

as d prime (p > 0.1).

fMRI Results
In the fMRI results described below, we only report regional ef-

fects if they survived correction for multiple comparisons (over

the appropriate search volume) at a false discovery rate of 0.05.

The p values for regional effects cited below pertain to the

mean activity over voxels that were part of a significant cluster.

Expectation Representation
Comparing fMRI responses on A/�A trials relative to A/B trials

revealed a ventral stream network spanning early visual regions

and the anterior temporal pole (Figure 2 and Table S1). Two

regions falling within the occipital cortex exhibited larger

responses on A/�A than A/B trials, one on the superior/middle

occipital gyri in Brodmann’s area (BA) 18/19 (MOG; main effect

of block: F(1,19) = 47.8, p < 1 3 10�5) and another lying ventrally

and medially on the fusiform/lingual gyri (FG; F(1,19) = 32.8, p <

1 3 10�4). Within these clusters, match and nonmatch trials eli-

cited responses that did not differ reliably (both p values > 0.2).

Outside of the visual cortices, preferential responses for A/�A

relative to A/B trials were identified in voxels falling close to the

temporal pole (BA 38) bilaterally (F(1,19) = 25.47, p < 1 3 10�5).

This regions fell on the medial aspect of the superior temporal

gyrus (STG). As for visual regions, no difference between match

and nonmatch trials was observed here (p > 0.1).
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Prediction Error
We identified maximal prediction error responses bilaterally on

the middle/inferior temporal gyrus complex (ITG), straddling BA

19 and 37 (ITG; Figure 3 and Table S2). In ITG, A/�A nonmatches

simultaneously elicited larger responses than match trials (t(19) =

4.54, p < 0.001) and larger responses than A/B trials (t(19) = 4.29,

p < 0.001), whereas fMRI responses on match and A/B trials did

not differ (p > 0.6). In the primary visual cortex (V1p), on the me-

dial aspect of the lingual gyrus (responsible for representing the

peripheral visual field), nonmatch trials similarly elicited larger

fMRI responses than A/B trials (t(19) = 5.09, p < 1 3 10�4) and

match trials (t(19) = 3.24, p < 0.005), which did not differ from

one another (p > 0.6).

Additional visual prediction error responses were observed bi-

laterally on the dorsalaspect of the superior occipital gyrus, where

BA 19 meets the parietal lobe (Figure 2). In this region, the advan-

tage for nonmatch trials was largely carried by its difference from

A/B trials (t(19) = 5.80, p < 1 3 10�4); the comparison nonmatch >

match achieved a more modest level of statistical significance

(t(19) = 2.86, p < 0.01). Indeed, unlike in V1 or ITG, the main effect

of block (A/�A trials > A/B trials) was also statistically reliable

F(1,38) = 9.67, p < 0.006), suggesting that this region was engaged

by both prediction error and expectation representation.

Figure 2. Brain Regions Involved in Repre-

senting Prior Expectations

(A) Voxels responding to the contrast A/�A > A/B,

thresholded at p < 0.001, uncorrected. The red-

white scale refers to t values.

(B) Parameter estimates for A/B, match, and non-

match trials averaged within ROIs corresponding

to MOG (left), FG (middle), and STG (right).

Error bars indicate SEM.

Functional Interactions among
Visual Regions during
Perceptual Inference
Having identified a brain network for pre-

dictive visual inference that exhibited

characteristic responses in the visual cor-

tices and ventral stream, we turned to

functional connectivity to characterize

regional interactions during perceptual

decisions of an A/�A and A/B nature

(Figure 4). Our analysis of functional cou-

pling comprised two steps: first, we used

a psycho-physiological interaction (PPI)

analysis to identify cortical regions whose

responses depended upon the activity of

other reference regions and then as-

sessed the directed effective connectivity

among them using dynamic causal mod-

eling.

Functional Connectivity
(PPI Analyses)
Predictive coding allowed us to hypothe-

size that, during A/�A relative to A/B

blocks, information should flow from regions involved in expec-

tation representation (e.g., MOG, FG) to regions demonstrating

error prediction responses (e.g., V1, ITG). Accordingly, within

the ITG ROI as defined above, A/�A blocks led to significantly in-

creased functional connectivity with seed regions placed at

MOG (t(19) = 3.22, p < 0.005) and FG (t(19) = 3.89, p < 0.001).

The specificity of this effect to ITG is illustrated in Figure 4A,

where all voxels exhibiting functional connectivity with both

MOG and FG are rendered onto the relevant axial slice (z = 0)

at a joint threshold of p < 0.005, uncorrected. Although neither

MOG nor FG showed increased connectivity with V1p (all p

values > 0.2), a more posterior portion of V1 (involved in repre-

sentation of the central visual field; here, V1c) was also jointly tar-

geted by MOG and FG during A/�A blocks, with high statistical

reliability (Figure 4A).

Second, on nonmatch trials, increased information should flow

between early visual regions involved in orientation representa-

tion (such as V1) and ITG, reflecting the higher weight afforded

to bottom-up information when conditional expectations are

not sufficient to explain the causes of sensation. We thus esti-

mated a second PPI, searching across the brain for voxels

whose correlation with a seed region planted at ITG increased

on nonmatch trials relative to other trial types (Figure 4B). As
Neuron 59, 336–347, July 31, 2008 ª2008 Elsevier Inc. 339
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predicted, this analysis revealed increased connectivity between

ITG and V1c (t(19) = 3.12, p < 0.006).

Forward and Backward Connectivity (DCM Analyses)
Predictive coding argues that whereas sensory evoked re-

sponses—reflecting prediction error—flow forward within the

cortical hierarchy, information about prior expectations flows

backward. Because PPIs do not carry information about the di-

rection of flow of information between brain regions, we next

turned to DCM, which draws upon concepts from systems the-

ory to model how observed fMRI activations depend on both

the experimental variables and the circulation of neural informa-

tion within an anatomically plausible brain network (Friston et al.,

2003). DCM calculates the statistical likelihood that an evoked

response is driven by the flow of information from another brain

area with which it is interconnected (monosynaptically or other-

wise), leading to the derivation of modulatory parameters (bilin-

ear terms) expressing the extent to which unidirectional effective

connectivity between these regions varies as a function of stim-

ulus inputs or experimental context. We equate information

‘‘flow’’ with the influence that activity in a source region has on

the rate of change of neuronal states in a target region, encoded

directly by the parameters of the DCM that are estimated below.

Building upon the PPI results, our DCM analyses posed two

questions: first, does information flow forward or backward or re-

ciprocally between V1c and ITG on nonmatch trials? Second,

does expectation-related information flow from FG to V1c, or

Figure 3. Neural Prediction Error Re-

sponses

(A) Voxels responding to the contrast nonmatch >

(A/B and match), thresholded at p < 0.001, uncor-

rected. The red-white scale refers to the t value at

each significant voxel.

(B) Parameter estimates for A/B, match, and non-

match trials averaged within ROIs corresponding

to V1p (left), sV3 (middle), and ITG (right).

Error bars indicate SEM.

from FG to ITG, or both? (The selected re-

gions of interest are shown in Figure 4C.

We focused on FG because it yielded

more robust effects in the PPIs and be-

cause the parameter estimates observed

here were positive-going and thus more

easily interpretable.) Combining these

questions created a family of nine possi-

ble DCMs, and we used Bayesian model

comparison to obtain statistical esti-

mates of which model offered the opti-

mum balance between simplicity and fit

to the data (Penny et al., 2004).

We began with a standard model de-

scribing the influence of three parameters

on effective connectivity: (1) simple visual

stimulation, independent of condition

(photic), (2) the main effect of the A/�A

task, relative to the A/B task (A/�A), and

(3) the effect due to A/�A nonmatch trials, relative to other trial

types (nonmatch). In the standard model, visual information

(photic) entered the model at V1c, and expectation-related infor-

mation (A/�A) entered at the STG; intrinsic connectivity was

specified in reciprocal, hierarchical fashion (between primary

and extrastriate cortices, within the extrastriate cortex, and

from the extrastriate cortex to the STG); forward modulatory

connectivity from V1c to ITG increased with photic, and back-

ward connectivity from the STG to FG increased with A/�A.

Nine model variants were created by building upon this standard

model with combinations of the modulatory effective connec-

tions described above. The different patterns of modulatory con-

nectivity (on a full reciprocal intrinsic connectivity) expressed in

each variant is reported in Figure 4E.

Bayesian model comparison preferred the model in which

nonmatch trials led to enhanced forward connectivity from V1c

to ITG, whereas A/�A trials led to increased backward connec-

tivity from FG to V1c (Figure 4D and Tables S4 and S5). In this

model, photic enhanced forward connectivity from V1c to ITG

(t(19) = 4.68, p < 0.001, 1.91% increase over baseline), A/�A sig-

nificantly enhanced backward connectivity from FG to V1 (t(19) =

2.67, p < 0.02, 2.48% increase), and nonmatch increased con-

nectivity from V1c to ITG (t(19) = 3.32, p < 0.004, 2.23% increase).

Intrinsic but not modulatory connectivity was significant be-

tween STG and V4 (t(19) = 3.27, p < 0.004), and driving input to

V1 and STG was, as expected, highly significant (all p values

< 0.001). This model thus supports the view espoused by
340 Neuron 59, 336–347, July 31, 2008 ª2008 Elsevier Inc.
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Figure 4. Functional and Effective Connec-

tivity among Visual Regions

(A) PPI results 1: voxels exhibiting reliable in-

creases in connectivity with both MOG and FG

during A/�A blocks relative to A/B blocks, ren-

dered at a joint threshold of p < 0.005, uncorrected.

Voxels in the right panel overlap heavily with ITG.

(B) PPI results II: voxels exhibiting reliable in-

creases in functional connectivity with ITG on non-

match trials (relative to match and A/B trials).

(C) ROIs used for DCM analyses. V1c (green) was

defined by its overlapping sensitivity to the PPIs

described in (A) and (B). V1c exhibited highly signif-

icant positive-going responses on all trials that did

not differ as a function of condition. ITG (red), FG

(blue), and STG (cyan) are defined by the analyses

described in Figures 2 and 3.

(D) The optimal DCM. BMC indicated that the opti-

mal DCM, chosen from a space of nine models,

was characterized by enhanced forward connec-

tivity from V1c to ITG following all visual events

(green box, photic) and nonmatch trials (red box)

in particular. By contrast, backward connectivity

from FG to V1c increased on A/�A trials (blue

boxes). Intrinsic connectivity is signaled by black

(significant, p < 0.05) or gray (nonsignificant) intrin-

sic connectivity. Driving input from photic to V1 (p <

1 3 10�12) and from A/�A to STG (p < 1 3 10�3)

were also significant. Asterisks refer to signifi-

cance for one-sample t tests conducted over sub-

jects: *p < 0.05, **p < 0.01, ***p < 0.001.

(E) All DCMs. Each of the nine DCMs was charac-

terized by a different pattern of modulatory con-

nectivity. The winning model was model 1.
predictive coding that information about prior expectations (spe-

cific to A/�A trials) flows backward (e.g., from FG to V1), whereas

nonmatch trials lead to increased forward flow of information

from lower to higher regions (V1 to ITG).

Perceptual Matching
We predicted that the vmPFC/OFC would respond to perceptual

matches, that is, would exhibit the largest responses whenever

there was a coincidence between expected and observed per-

ceptual information. Correspondingly, the vmPFC was more ro-

bustly activated by A/�A match than nonmatch trials (t(19) = 5.13,

p < 1 3 10�4) and by A/�A match than A/B trials (t(19) = 4.63, p <

0.001), whereas nonmatch and A/B trials elicited similar re-

sponses (p > 0.3) (Figure 5). Statistical significance for the OFC

was more modest (match > A/B trials, t(19) = 3.8, p < 0.002;

match > nonmatch trials, t(19) = 3.33, p < 0.004; A/B > nonmatch,

p > 0.7). The posterior cingulate cortex (PCC) responded in a

similar fashion (match > nonmatch: t(19) = 4.37, p < 0.001;

match > A/B: t(19) = 4.36, p < 0.001), with no difference for non-

match > A/B trials (p > 0.9). Control analyses rule out task diffi-

culty as an alternative explanation for the results obtained in

vmPFC and PCC (Supplemental Results 1).

DISCUSSION

Psychophysical detection (yes-no) and discrimination (forced

choice) judgments have historically been considered indices
of a common decision process (Swets, 1964). However, we

observed striking differences in the brain activity elicited by

these two types of perceptual judgment. Brain regions within

the visual cortex (MOG and FG) and at the apex of the ventral

stream (STG) were more active during A/�A decisions, that is,

judgments that were informed by specific prior information about

forthcoming stimulation. Other visual regions showed prediction

error responses and ventral frontal and medial parietal sites re-

sponded to perceptual matching when expected and observed

sensory information coincide. Together, these results describe

a network for ‘‘predictive’’ perceptual decision making that links

the visual cortex with ventral prefrontal sites previously impli-

cated in decision making and reward (Bechara et al., 1994;

Rushworth et al., 2007; Wallis, 2007).

How, precisely, do decision strategies differ on A/�A and A/B

judgments? Behavioral data revealed that, on A/�A blocks,

match trials elicited very rapid responses, whereas nonmatch tri-

als elicited slower responses relative to the baseline set by A/B

responding. This phenomenon replicates the classically de-

scribed RT advantage for ‘‘same’’ over ‘‘different’’ judgments

in perceptual comparison tasks, known as the ‘‘fast-same’’ ef-

fect (Egeth, 1966; Farell, 1985). Conceiving of the decision as

a diffusion (or ‘‘random walk’’) process in which sensory informa-

tion in favor of one alternative or another is serially accumulated

toward a decision threshold—a quantitative description of the

decision process that has been successful in explaining both be-

havioral (Ratcliff, 1978) and neural (Kim and Shadlen, 1999)
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data obtained in perceptual choice tasks—we consider two ex-

planations for this effect. First, it could be that, on A/�A blocks,

the mere presence of prior information biases the origin of the

random walk toward the threshold for ‘‘same’’ judgments (i.e.,

toward A and away from �A), rendering RTs for A shorter, and

for �A longer, than for A/B judgments where the diffusion pro-

cessing begins equidistant from the thresholds for A and B. By

this account, because conditional expectations (reflecting the

anticipation of one favored perceptual alternative) are already

present in the visual system, less bottom-up sensory information

has to be accumulated for perception to be completed and the

decision threshold breached (Carpenter and Williams, 1995).

Another possibility is that the acquisition of sensory informa-

tion is actively modulated by expectations, for example as pro-

cessing in lower visual region is biased in favor of the condition-

ally expected target represented in higher regions (Friston, 2005).

This top-down biasing in the visual hierarchy can be seen as

a gain control mechanism, whereby ‘‘same’’ (or ‘‘A’’) information

is accumulated more rapidly toward threshold once the diffusion

process has begun, upon receipt of priors from higher stages of

the processing hierarchy. Below, we discuss or fMRI data in the

light of these two putative mechanisms of biased decision mak-

ing, arguing that both processes may be occurring in our task.

Expectation Representation
Two extrastriate cortex regions were more active during A/�A

decisions than A/B decisions. Critically, these activations are

Figure 5. Brain Regions Involved in Match-

ing Expected and Observed Perceptual

Information

(A) Voxels responding to the contrast match > (A/B

and nonmatch), thresholded at p < 0.001, uncor-

rected. The red-white scale refers to t values.

(B) Parameter estimates for A/B, match, and non-

match trials averaged within ROIs corresponding

to the PCC, vmPFC, and OFC.

Error bars indicate SEM.

not attributable to differences in the type

or nature of sensory stimulation, as the

train of stimuli presented in A/�A and

A/B blocks was carefully equated for its

physical characteristics. Nor is this effect

likely to be due to differences in the de-

ployment of attention or the level of cogni-

tive demand between the two conditions,

as behavioral data indicated that—on av-

erage—accuracy and RTs were statisti-

cally indistinguishable between blocks.

Our study thus differs from previous re-

search in which attention was biased to-

ward one task-relevant visual feature or

dimension and away from another (Desi-

mone and Duncan, 1995; Kastner et al.,

1999) in that both A/�A and A/B condi-

tions required subjects to attend equally

to the same stimulus dimension (angle

of orientation). Instead, we argue that these MOG and FG activa-

tions reflect the privileged maintenance of prior information—in

this case, an anticipated target orientation—against which each

incoming sensory stimulus is compared. This view is consistent

with the neurophysiological recordings demonstrating that, in

the visual cortex, extrastriate regions including MOG and FG con-

tain orientation-tuned neurons (Desimone et al., 1985; Pasupathy

and Connor, 2002) and fMRI studies revealing orientation-specific

adaptation effects in these regions (Boynton and Finney, 2003).

However, our connectivity analyses also revealed that direc-

tion-specific backward projections from FG to V1 were en-

hanced on A/�A relative to A/B blocks. One interpretation of

this finding is that these regions also contribute actively to the

decision process by projecting back expectation-related signals

to guide processing of orientation-related information in earlier

visual regions, such as V1 (Hubel and Wiesel, 1968). A plausible

anatomical basis for such backprojections has been described

in the macaque (Felleman and Van Essen, 1991; Shipp and

Zeki, 1989), and a causal role for reentrant connections between

cortical stages in the formation of a visual percept has been pre-

viously demonstrated in humans (with TMS) and other primates

(with regional cooling), where temporarily inactivating visual

area MT has been shown to disrupt figure-ground segmentation,

in the latter case by weakening center-surround interactions in

hierarchically lower regions, V1, V2, and MOG (Hupe et al.,

1998; Pascual-Leone and Walsh, 2001). These findings thus

contribute to a growing literature emphasizing the importance
342 Neuron 59, 336–347, July 31, 2008 ª2008 Elsevier Inc.
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of reentrant connectivity in visual perception (Gilbert and Sig-

man, 2007).

Another consequence of our tight control over the sequence of

stimulation in A/�A and A/B blocks is that statistically both A

and �A, and A and B were equiprobable, and thus the neural

and behavioral biases observed on A/�A blocks are not attribut-

able to the brain tracking higher-order likelihoods of occurrence

of a given stimulus. Rather, these biases probably occur be-

cause prior knowledge is available about the possible presence

of a single stimulus exemplar. This bias may constitute an innate

tendency to anticipate the persistence of a currently available

percept, an ecologically plausible assumption in particular in

the visual domain, where objects exhibit a gestalt constancy

and sensory signals tend to be highly autocorrelated.

Although we argue that A/�A blocks engendered a height-

ened expectation of a specific orientation, there are other pro-

cesses that were probably common to both blocks. For exam-

ple, both blocks required information about the appropriate

response contingencies to be sustained. One possibility is

that these more general short-term storage mechanisms are as-

sociated with the engagement of parietal and prefrontal cortex

(PFC) regions known to be tonically active when information is

held active across delay (Fuster, 1973). Indeed, fMRI activity

that diverged strongly from the resting baseline but that did

not differ between A/B or A/�A conditions was observed in pa-

rietal and prefrontal regions (Figure S1 and Table S6). These re-

gions may be particularly important for maintenance processes

that guard the instructed target representation from potentially

interfering information arising from the distracter stimuli or other

sources (Sakai et al., 2002). By contrast, the sustained signals

occurring uniquely during A/�A decisions may be closely allied

to that which accompanies mental imagery or during autobio-

graphical reminiscence (Buckner and Carroll, 2007; Hassabis

and Maguire, 2007), cognitive processes that may also require

the creation and monitoring of a ‘‘generative model’’ of visual

scenes or objects.

Prediction Error
During an orientation judgment task, we observed perceptual

mismatch responses in ITG, a visual region known to be involved

in processing simple stimuli defined by their orientation (Larsson

and Heeger, 2006). We interpret these activations as reflecting

‘‘prediction error’’ signals occur in task-specific visual cortical re-

gions, akin to those described in prefrontal and midbrain struc-

tures following the surprising presence or absence of a reward

during reinforcement learning (O’Doherty et al., 2003). Prediction

error signals might reflect the expanded neurocognitive process-

ing needed to reconcile two sources of information: those arising

from prior expectations and those from observation. Indeed, it

has been argued that prediction error responses are ubiquitous

throughout the brain, and the monitoring of sensory surprise

may be a cardinal feature of many biological systems (Friston

et al., 2006). Computationalmodels have proposedplausible neu-

ral architectures giving rise to sensory error prediction responses,

for example, those in which population cortical responses repre-

sent a posterior probability distribution (Deneve, 2008).

How might prediction error signals contribute to perceptual

decision making? One possibility is that (consistent with the con-
tention that on A/�A blocks, the origin of a diffusion process is

biased toward the match threshold) nonmatch trials simply re-

quire more information to be accumulated in order to confirm

that a nonmatch has occurred and, consequently, more accom-

panying processing in extrastriate visual regions sensitive to the

critical dimension (orientation). If ITG is participating in the accu-

mulation of information about orientation, this would explain its

enhanced responsivity to nonmatch over match trials. Our con-

nectivity analyses additionally suggest that, where a nonmatch

is detected, greater weight may be placed upon forward-flowing

sensory evidence and less upon backward-flowing, expecta-

tion-related signals in order to rapidly reconcile disparities

between what was anticipated and what was observed.

Previous studies have reported that, even when visual stimuli

are presented rapidly or are degraded to optimally tax the per-

ceptual decision system, neural signals distinguishing match

and nonmatch trials can diverge as early as 150 ms following

stimulus onset (Bar et al., 2006b; Thorpe et al., 1996). Perceptual

decisions thus can occur very rapidly—perhaps too rapidly for

a prolonged, iterative adjustment of predictions and evidence.

Expectations thus might impinge on lower hierarchical stages

in the form of a rapid ‘‘initial guess,’’ which under normal viewing

conditions might critically contain low spatial-frequency informa-

tion, leaving perception of finer detail to bottom-up mechanisms

(Bar et al., 2006b). Recent studies have raised the intriguing pos-

sibility that the ventral prefrontal cortex might be the origin of

such signals (Bar et al., 2006b; Kveraga et al., 2007a).

The observed differences in the neural concomitants of match

and nonmatch events complement an earlier study in which sub-

jects viewed more complex visual objects, such as faces and

buildings. Face-responsive portions of the fusiform gyrus ex-

hibited stronger responses to faces during a face-matching

task than a control task, i.e., enhanced match responses (Sum-

merfield et al., 2006). Because predictive coding suggests that,

during a hierarchical recognition process, activations at a higher

levels ‘‘complete’’ lower-level perceptual signals with prior per-

ceptual codes, it follows that match-suppression (prediction er-

ror) responses should be observed in earlier visual regions and

match- enhancements in higher regions (such as those involved

in the processing of facial identity). Further support for this view

comes from studies demonstrating reduced fMRI responses in

early regions and enhancements to those in later regions during

perception of coherent relative to incoherent objects (Murray

et al., 2002) and moving dot patterns (Harrison et al., 2007).

Perceptual Matching
Finally, in a third major result, we demonstrate that the ventral

prefrontal cortex (including the OFC and the VMPFC) and the

PCC respond to the match between expected and observed in-

formation. Control analyses demonstrated that these activations

were not an artifact of match trials simply requiring less effort

and/or shorter processing times. How, then, might these regions

contribute to perceptual decision making?

Ventral prefrontal and medial parietal regions are known for

their sensitivity to ‘‘old’’ over ‘‘new’’ items in recognition memory

tasks (Wagner et al., 2005), a distinction that is very similar to that

made between match over nonmatch trials here. Moreover, they

are known to respond in a directionally signed fashion to the
Neuron 59, 336–347, July 31, 2008 ª2008 Elsevier Inc. 343
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surprising presence or absence of a reward that is predicted by

an earlier cue (O’Doherty et al., 2003; Wallis, 2007), suggesting

a role in processing the likely outcome encoded by a stimulus-

stimulus association (Rushworth et al., 2007). One possibility is

that the presence of a perceptual match—a ‘‘hit’’—is a reinforcer

in that it confirms the value and/or validity of the conditional

expectations as a feasible internal model of the external world.

Under conditions in which matches are scarce or absent, the

perceptual template is a poor reflection of actual sensory infor-

mation, and one would correspondingly expect it to be main-

tained less robustly, with concomitant behavioral effects (such

as a reduction in the RT benefit for matches over nonmatches).

One interpretation, thus, is that ventral PFC/ PCC activations

on match trials may thus reflect the receipt of prediction error

signals from visual regions, in the service of reinforcing internally

represented expectations during perceptual matching.

One line of evidence favoring this view is that tasks that are

most impaired following damage to the vmPFC/OFC tend to

be those that benefit from the creation, monitoring, and updating

of an internal or ‘‘model-based’’ representation of the external

world. For example, state-based accounts of probabilistic rever-

sal learning of visual discriminations outperform simple rein-

forcement-learning accounts in describing human behavioral

performance on the task, and the strength of the ‘‘prior’’ associ-

ated with one model over another increases in a fashion corre-

lated with vmPFC activity (Daw et al., 2006; Hampton et al.,

2006). The vmPFC may thus be responsible for assigning value

to internal representations, such as that for the perceptual ‘‘tem-

plate’’ corresponding to the anticipated orientation in our study.

The response on match trials may thus reflect a boost to sub-

jects’ confidence in their template upon receiving coinciding

sensory input (Koechlin et al., 2002), which will in turn minimize

the surprise associated with future repetitions of that sensory

event (Friston et al., 2006).

Another interesting possibility is that the ventral prefrontal re-

gions (in particular the OFC) contribute actively to the recognition

process and are themselves the source of top-down signals re-

sponsible for guiding object recognition on the basis of expecta-

tions. Bar and colleagues have argued that incoming visual

information is routed via orbitofrontal structures before being

projected back to the extrastriate visual cortex, this backward

connection offering an ‘‘initial guess’’ as to the identity of an ob-

ject that consists principally of low spatial frequency information

(Bar et al., 2006a). Although we did not include any of the ventral

prefrontal ROIs in our DCM (to preserve model simplicity and

because fMRI activity showed the opposite pattern to visual

regions, making mutual interdependency in their evoked BOLD

responses unlikely), we have previously shown that top-down

connectivity from vmPFC to face-responsive voxels on the fusi-

form gyrus is enhanced by matching judgments about faces

(Summerfield et al., 2006). Similarly, a DCM proposing top-

down connectivity from the OFC was the best explanation of

visual activations where magnocellular (low spatial frequency)

information was emphasized (Kveraga et al., 2007a). Indeed, it

is noteworthy that fiber bundles linking the ventral visual stream

with the vmPFC are known to pass through the superior medial

aspect of the anterior temporal cortex (Saleem et al., 2008), pre-

cisely where an additional cluster responding to prior visual infor-
344 Neuron 59, 336–347, July 31, 2008 ª2008 Elsevier Inc.
mation was observed in the current study. The possibility that the

ventral PFC receives prediction error signals and/or intervenes

directly in top-down object recognition is likely to constitute a fer-

tile topic for future investigation (Kveraga et al., 2007b).

As is often observed in fMRI studies, activity in the vmPFC,

OFC, and PCC deviated negatively from resting baseline, that

is, although these regions were ‘‘less deactivated’’ by matches

than nonmatches, signal levels were yet higher in the quiet rest

periods between blocks (Gusnard et al., 2001). Although this ob-

servation does not necessarily alter the functional significance

of the cognitive subtraction described above (Morcom and

Fletcher, 2007), by way of explanation, we speculate that the

higher activity levels observed in the vmPFC, OFC, and PCC at

rest could reflect a constant fulfillment of sensory expectations

that occurs whenever stimulus entropy is low and the unfolding

sequence of sensory events is highly predictable—at rest, the

brain is in a state of constant matching.

Although our study was carried out with simple, artificial stim-

uli, we believe that our results are relevant to a wider literature

concerning the perception and recognition of complex objects.

For example, the biasing mechanisms described above might

come into play when perceiving objects in a congruent context.

In support of this view, the PCC is more activated by objects with

an unambiguous contextual association (Bar and Aminoff, 2003),

leading to the suggesting that it contributes to the encoding

of associative information about visual objects and scenes

(Bar, 2007).

Conclusions
We report evidence that visual cortical regions represent expec-

tations and exhibit ‘‘prediction error’’ responses during decisions

of an A/�A type—those with an explicit matching component.

Connectivity analyses suggest that prediction error responses

flow forward and expectation-related information flows back-

ward, allowing incoming sensory information to be constrained

by prior information at each stage of the cortical hierarchy. These

results offer empirical support for an emerging quantitative the-

ory of perceptual inference (Friston, 2005). Finally, we argue

that ventral prefrontal and posterior cingulate regions also con-

tribute to perceptual inference by signaling the presence of

a match between expected and observed perceptual informa-

tion. Collectively, these data describe a cortical network for deci-

sions informed by prior information that links visual regions with

prefrontal cortical sites implicated in decision making and reward

(Bechara et al., 1994; Rushworth et al., 2007; Wallis, 2007).

EXPERIMENTAL PROCEDURES

Subjects

Twenty neurologically normal individuals between the ages of 20 and 26 par-

ticipated in the experiment. Subjects all had normal or corrected-to-normal vi-

sion and were recruited on campus at the Université Pierre et Marie Curie in

Paris, France. Subjects all gave informed consent during an interview with

our on-site physician and were paid 120 Euros for their participation.

Stimuli

All stimuli were generated and presented using PsychToolBox (Brainard, 1997)

and appeared on a uniform gray background. The experiment consisted of 48

blocks of nine stimuli divided into four experimental runs of �8 min. Each run
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began with 10 s lead in and ended with�20 s lead out. Each block began with

an instruction cue for 3 s, followed by the gray background screen for a ran-

domly determined interval of�1.5 s (range 1–2 s). Instruction cues were darker

gray circles crossed by a single green line (A/�A condition) or by a red and

a blue line (A/B condition). A rest period of �6 s (range 4–8 s) was interposed

between blocks. Stimuli were Gabor patches (sine wave gratings enveloped by

a Gaussian) of 1.6 cycles/�, subtending 3.8� visual arc, with nine equally dis-

tributed contrast levels ranging from 1.2% to 11.0%, added to a noise back-

ground. Gabor patches were presented for 1.5 s with an interstimulus interval

of �1.5 s (drawn from a uniform distribution with range 1–2 s). Subjects made

an unprompted response during stimulus presentation. No feedback was

given.

Design

A/B blocks (n = 24) and A/�A blocks (n = 24) occurred in alternation with the

first block randomly determined in each run. On A/B blocks, orientation A

was drawn from a uniform random distribution and differed from orientation

B by exactly 60�. Subjects were instructed to memorize the instruction cue

and respond with button 1 if the Gabor patch was oriented identically to the

blue line and button 2 if it was oriented identically to the red line. On half of

the A/�A blocks (n = 12), the stimulus train was identical to A/B blocks, i.e.,

two Gabor patches of orientation that differed by 60�. On the remaining

A/�A blocks, two distracter Gabor patches, each differing from the target

patch by 60�, were presented. Subjects were instructed to memorize the in-

struction cue and respond with button 1 if the Gabor patch was oriented iden-

tically to the green line and button 2 if it was not. On average across all A/�A

blocks, half of the trials were A and half were not; on average across all A/B

blocks, half of the trials were A and half were B. Responses were made with

the index (left) and middle (right) finger of the right hand. The response keys

used by the subject (index, middle finger) were fully counterbalanced within

and between both conditions.

fMRI Data Acquisition

Magnetic resonance images were acquired with a Siemens (Erlangen, Ger-

many) Allegra 3.0T scanner to acquire gradient echo T2*-weighted echo-pla-

nar images with blood oxygenation level-dependent contrast as an index of lo-

cal increases in synaptic activity. The image parameters used were as follows:

matrix size, 64 3 64; voxel size, 3 3 3 mm; echo time, 40 ms; repetition time,

2000 ms. A functional image volume comprised 32 contiguous slices of 3 mm

thickness (with a 1 mm interslice gap), which ensured that the whole brain was

within the field of view.

Behavioral Analyses

Behavioral data were analyzed with t tests and ANOVAs, with an a of p < 0.05.

Post hoc comparisons between match and A/B trials, and nonmatch and

A/B trials, were always made by comparing responses made with the same

finger.

fMRI Analyses: Preprocessing

Imaging data were analyzed with SPM2 (Wellcome Department of Imaging

Neuroscience, University College London, UK, (http://www.fil.ion.ucl.ac.uk/

spm/spm2.html). Image treatment followed a standard preprocessing stream

in which functional T2* images were slice-timing corrected and spatially real-

igned to the first volume acquired. The first five functional scans from each task

were discarded prior to the subsequent analyses. Transformation parameters

were derived from normalizing the coregistered mean echo planar image to

a corresponding template brain within the stereotactic space of the Montreal

Neurological Institute, and the derived parameters were then applied to nor-

malize the remaining echo planar volumes for that subject. Normalized images

were resampled at 5 3 5 3 5 mm and then smoothed with a Gaussian kernel of

10 3 10 3 10 mm full-width half-maximum. A 128 s temporal high-pass filter

was applied in order to exclude low-frequency artifacts. Temporal correlations

were estimated using restricted maximum likelihood estimates of variance

components using a first-order autoregressive model. The resulting nonspher-

icity was used to form maximum likelihood estimates of the activations.
Conventional SPM Analyses

Conventional SPM analyses included seven task regressors: the instruction

cues for (1) A/�A and (2) A/B; (3) match and (4) nonmatch trials for the A/�A

blocks; corresponding (5) A and (6) B responses for A/B blocks, and (7) errors.

All regression analyses also included a parameter encoding the mean signal

from 1000 randomly selected voxels from the space outside the brain in a fur-

ther attempt to eliminate scanner noise. SPMs were obtained at the second

(between-subject) level with one sample t tests on the following contrasts:

prediction error (Figure 2): [0 0 �1 3 �1 �1 0]; expectation representation

(Figure 3): [0 0 1 1 �1 �1 0]; match detection (Figure 5): [0 0 3 �1 �1 �1 0].

SPMs in Figures 2A, 3A, and 5A are visualized at p < 0.001, extent threshold

5 voxels (�0.625 ml) uncorrected for multiple comparisons, but all clusters re-

ported in the text survived false discovery rate (FDR) correction for multiple

comparisons (Genovese et al., 2002). The clusters shown above each bar

graph are at variable thresholds and are for display purposes only. The cluster

maxima (Montreal Neurological Institute coordinate system) and associated

FDR corrected p values are reported in accompanying Supplemental Tables.

Statistical values reported in the text were obtained by extracting second-level

contrast values from the mean of the relevant cluster from the SPM (thresh-

olded at uncorrected p < 0.001) and performing conventional ANOVA or t tests

on these data. A summary of the major regions discussed is shown in

Figure 1E.

PPI Analyses

Seed voxels for MOG, FG, ITG, and more anterior brain regions were defined

individually for each subject as the peak voxel sensitive to the appropriate con-

trast falling within the relevant cluster (defined at p < 0.001, uncorrected, at the

group level). Using standard analysis techniques, the ‘‘physiological’’ time se-

ries extracted at this voxel was corrected for variance associated with param-

eters of no interest, deconvolved with the haemodynamic responses, multi-

plied by a parameter encoding the relevant ‘‘psychological’’ contrast (e.g.,

A/�A > A/B), and reconvolved to form a ‘‘psychophysiological interaction’’

(PPI) regressor. This regressor was entered into a design matrix alongside pa-

rameters encoding the main effects of the contrast and time series indepen-

dently, as well as nuisance regressor encoding instructions and errors (i.e., re-

gressors 1, 2, and 7, see above). Results are reported with an a of p < 0.05,

uncorrected, within ROIs defined in an a priori fashion by conventional SPM

analyses.

DCM Analyses

A new design matrix with six regressors was constructed for DCM analyses,

with nuisance regressors 1, 2, and 7 corresponding to the instructions and er-

ror trials, plus three regressors of interest: photic (all trials), A/�A (all trials in

A/�A blocks), and nonmatch (all nonmatch A/�A trials). New SPMs associated

with these three regressors were used to define individual subject peaks for

V1c, ITG, and FG, all of which nevertheless fell within the bounds of their cor-

responding cluster from conventional SPM analyses. Voxels of interest were

extracted as for PPI analyses.

We constructed nine DCMs encapsulating variable patterns of forward,

backward, and reciprocal connectivity among V1c, FG, ITG, and STG during

photic, A/�A, and nonmatch. These models were then compared in a pairwise

fashion using Bayesian model comparison in order to identify the model offer-

ing an optimal tradeoff between complexity and goodness of fit. Bayesian

model comparisons calculates Bayes factors reflecting the optimality of one

of two competing models, corresponding to the ratio of the probability of the

data y given the model 1, or p(yjm1), to the probability of the data given model 2,

or p(yjm2). Model evidence is adjusted according to Bayesian (BIC) and Akaike

(AIC) criteria, the former of which favors simpler models and the latter more

complex models: by an established convention, comparisons for which both

of these Bayes factors exceed the exponential of 1 (�2.718) reflect positive

evidence in favor of one model over another. At the group level, a group Bayes

factor can be established by taking the product of minimum Bayes factor (AIC

or BIC) across the cohort. Confirmation that the group Bayes factor is not

driven by outlying data is offered by the ‘‘positive evidence ratio,’’ the ratio

of subjects displaying evidence (BF > 1) in favor of model 1 to those displaying

evidence in favor of model 2 (BF < 1). In Supplemental Data, we describe all
Neuron 59, 336–347, July 31, 2008 ª2008 Elsevier Inc. 345
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nine models, along with their Bayes factors and positive evidence ratios and in

pairwise competition with each of the eight other models.

SUPPLEMENTAL DATA

The Supplemental Data include tables, figures, and Supplemental Results and

can be found with this article online at http://www.neuron.org/cgi/content/full/

59/2/336/DC1/.
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