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Multiple studies have documented an inverse relationship between the number of to-be-attended or remembered items in a display (“set
size”) and task performance. The neural source of this decline in cognitive performance is currently under debate. Here, we used a
combination of fMRI and a forward encoding model of orientation selectivity to generate population tuning functions for each of two
stimuli while human observers attended either one or both items. We observed (1) clear population tuning functions for the attended
item(s) that peaked at the stimulus orientation and decreased monotonically as the angular distance from this orientation increased, (2)
a set-size-dependent decline in the relative precision of orientation-specific population responses, such that attending two items yielded
a decline in selectivity of the population tuning function for each item, and (3) that the magnitude of the loss of precision in population
tuning functions predicted individual differences in the behavioral cost of attending an additional item. These findings demonstrate that
attending multiple items degrades the precision of perceptual representations for the target items and provides a straightforward account
for the associated impairments in visually guided behavior.

Introduction
Multiple studies have documented an inverse relationship be-
tween the number of to-be-attended or remembered items in a
display (“set size”) and task performance (Palmer, 1990; Palmer
et al., 1993; Geisler and Chou, 1995; Zhang and Luck, 2008). Two
different explanations of these effects have been offered. “Percep-
tual coding models” posit that perceptual quality is constrained
by the distribution of a finite neural resource that must be spread
more thinly when set size increases (Posner et al., 1980;
Bundesen, 1990; Palmer et al., 2011). In contrast, “decision inte-
gration models” posit that the internal noise associated with each
perceptual representation is independent of set size (Palmer,
1995; Palmer and McLean, 1995; Eckstein et al., 2000; Verghese,
2001) and that declines in performance reflect increasing deci-
sion noise.

Recently, Pestilli et al. (2011) attempted to discriminate
between these models by measuring blood oxygenation level-
dependent (BOLD) responses in visual areas during a contrast-
discrimination task. Although behavioral performance was
better—and BOLD responses were larger— during attend-one
relative to attend-four trials, quantitative modeling indicated
that attention-related changes in behavior could not be solely
explained by changes in the quality of stimulus representations in

visual cortex (e.g., changes in the mean or variance of BOLD
responses across trials). Instead, they favored a decision integra-
tion model in which neural responses are subjected to weighted
pooling and a “max” rule is applied to identify the target. Two
points motivate a reexamination of this question. First, the
contrast-discrimination task may be conducive to grouping strat-
egies that could minimize set size effects. Second, Pestilli et al.
(2011) used a univariate analytic approach that is not always
sensitive to qualitative changes in neural activity (Harrison and
Tong, 2009; Serences et al., 2009a; Serences and Saproo, 2012).

Thus, we reexamined these alternative accounts by exam-
ining set-size-dependent changes in the relative precision of
orientation-specific population responses measured via fMRI.
We used a forward encoding model of orientation selectivity to
reconstruct orientation-specific response profiles— channel tun-
ing functions (CTFs)—while observers attended one or two pe-
ripheral targets (Brouwer and Heeger, 2011; Serences and
Saproo, 2012) and performed a challenging visual discrimination
task that discouraged perceptual grouping. According to percep-
tual coding models, CTF precision should decline as set size rises
from one to two because two attended representations would
each receive a smaller proportion of a finite resource. Alterna-
tively, decision integration models predict no qualitative differ-
ence in CTF precision because the internal noise of each
representation is independent of set size and load-dependent ef-
fects reflect noise in decision-related processes.

To preview our findings, CTF precision was reliably lower
when more items were attended. Moreover, the reduction in the
precision of the population response profiles was strongly corre-
lated with associated reductions in behavioral performance,
showing that reductions in the precision of population responses
provides a compelling explanation of declining behavioral per-
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formance. Thus, although decision processes may also be chal-
lenged by increases in set size, attending additional items can also
have consequences for the quality of perceptual codes.

Materials and Methods
Subjects. Fourteen neurologically intact human subjects (six females)
were tested in a single 2.5 h session. All subjects self-reported normal or
corrected-to-normal visual acuity and gave both written and oral in-
formed consent. Before scanning, each subject completed a single 1 h
behavioral training session. Compensation for participation was $10/h
for behavioral training and $25/h for scanning.

Stimuli and apparatus. Visual stimuli were generated using the Psycho-
physics Toolbox (Brainard, 1997; Pelli, 1997) implemented in MATLAB
(MathWorks). Stimuli were rendered in white on a black background via
a rear projection system. Button-press responses were made on an fMRI-
compatible response box using the index and middle fingers of the right
hand. Subjects were instructed to hold fixation on a small central dia-
mond (subtending 0.18° from viewing distance of 58 cm) throughout
each scan (eye position data were continuously collected to ensure com-
pliance with these instructions; see below, Eye tracking).

Experimental task. The sequence of events on each trial is presented in
Figure 1. Each trial began with the presentation of two full-contrast
square-wave grating stimuli (radius of 4°, 2.67 cycles/°) in the upper left
and right quadrants of the display (horizontal and vertical eccentricity of
�7° and �5°, respectively). To elicit a strong, stimulus-specific BOLD
response, we presented full-contrast stimuli on a black background, thus
introducing both a contrast onset and a luminance increment for each
stimulus presentation. Each stimulus was randomly assigned to one of
two orientation values from distributions spanning 5–162.5° or 15–
172.5° (for the left and right stimuli, respectively; both orientation dis-
tributions increased in steps of 22.5°) for a total of eight unique
orientations in each distribution; the distributions were offset from one
another to reduce the likelihood of perceptual grouping of identical or
similarly oriented gratings. The two gratings flickered at a rate of 3 Hz
(166.7 ms on, 166.7 ms off) for a total of 5 s, and the spatial phase of both
stimuli was randomized on each cycle. A fixation cue was highlighted on
the left, right, or both sides (red or green, counterbalanced across sub-
jects; Fig. 1) to instruct observers whether to attend the left, right, or both
gratings to detect brief clockwise or counterclockwise displacements in
orientation. Subjects were instructed to press one of two buttons to dis-
tinguish whether a clockwise or counterclockwise displacement was de-
tected. Each trial included two target events that were randomly
distributed among cued items across time. During set size 1 trials, when
only one stimulus was attended, no rotations occurred on the irrelevant
stimulus; during set size 2 trials, when both stimuli were attended, targets
were distributed randomly so that rotations occurred only in the left,
only in the right, or across both stimuli (balanced across trials). Each trial
was followed by a randomly jittered intertrial interval (5, 6, 7, or 8 s).

Stimulus orientation and set size (1 or 2) were balanced within each
scan (in which “scan” refers to a continuous, 370-s-long block of 32
trials). Orientation differences between the two stimuli were fully coun-
terbalanced across a total of eight consecutive scans, resulting in 64 total
possible orientation pairings for each condition. For set size 1 trials (16
trials per block), there were an equal number of attend left and attend
right trials; for set size 2 trials (16 trials per block), each trial was an
attend-both trial.

Staircase procedure. To ensure that the task was sufficiently challeng-
ing, we adjusted task difficulty by computing orientation rotation thresh-
olds (defined as the minimum rotation magnitude yielding 75% correct
performance) for each subject in a separate behavioral testing session
(completed 1–2 d before the scanning session). The staircase procedure
was identical to the experimental task with the only exception being that
thresholds were independently modulated for set sizes 1 and 2. Rotation
thresholds for set size 1 trials were used to set the target disparities for
both set sizes during the scan session. This enabled a clear behavioral
measure of the cost of attending an additional item.

Eye tracking. To assess compliance with fixation instructions, eye po-
sition data were obtained via an ASL 5000 infrared tracking system (Ap-

plied Sciences Laboratory). Recording was performed at 60 Hz, and data
were filtered for blinks and corrected for linear drift offline. For each trial,
we identified all stable fixations (defined as a 200 ms epoch during which
eye position did not deviate �0.25°) during a period extending the entire
trial epoch. The x and y positions of fixations made during the trial were
saved for offline analyses.

fMRI data acquisition and analysis. fMRI data were collected using a 3
T Siemens Allegra system at the Robert and Beverly Lewis Center for
Neuroimaging at the University of Oregon. Anatomical images were
acquired using a spoiled-gradient-recalled T1-weighted sequence that
yielded images with a 1 mm 3 resolution. Whole-brain echo-planar im-
ages (EPIs) were acquired in 33 transverse slices (3 mm 2 in-plane reso-
lution, 2000 ms repetition time, 30 ms echo time, 90° flip angle, 64 � 64
matrix, 192 mm field of view, 3.5 mm slice thickness, no gap). EPIs were
slice-time corrected, motion corrected (both within and between scans),
and high-pass filtered (three cycles per run). Image preprocessing and
data analysis were performed using BrainVoyagerQX (version 1.9; Brain
Innovation) and custom time series and custom routines written in
MATLAB (version 2010a; MathWorks).

Retinotopic mapping. Retinotopic mapping data were acquired using a
rotating checkerboard wedge flickering at 8 Hz and subtending 45° of

Figure 1. Behavioral task. Subjects were instructed to attend the item indicated by the
central cue. During set size 1 trials, either the left or right side of the cue was shaded green,
indicating that subjects were to attend only the left or right grating, respectively; during set size
2 trials, both sides of the cue were shaded. Subjects were instructed to detect angular deviations
in an attended item and to indicate its direction (counterclockwise or clockwise). Stimuli oscil-
lated (3 Hz) for 5 s, followed by a randomly jittered intertrial interval.
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polar angle (Engel et al., 1994; Sereno et al., 1995; following standard
procedures described in detail previously). Each participant completed a
single scan lasting 480 s. This procedure was used to identify retinotopic
boundaries of primary visual cortex (V1). To aid in the visualization of
these regions, data were projected onto a computationally inflated rep-
resentation of each observer’s gray/white matter boundary.

Functional localizer and voxel selection. Each participant also com-
pleted one to two scans (15 trials) of a functional localizer task to identify
voxels within V1 that were responsive to the spatial position occupied by
the oriented grating stimuli of the primary experiment. Two full-
contrast, phase-reversing (10 Hz) checkerboard stimuli (4° radius) that
exactly matched the size and spatial position of the oriented grating
stimuli of the main task were presented for a total of 10 s; participants
were required to detect brief (50 ms) reductions in stimulus contrast that
occurred simultaneously in both stimuli at unpredictable intervals on
each trial. Each trial was followed by a 10 s fixation interval. Visually
responsive regions of V1 were identified using a general linear model
(GLM) with a single regressor— denoting stimulus presence (i.e., on vs
off)—that was constructed by convolving a boxcar model of the stimulus
sequence with a gamma function to account for the assumed shape of the
hemodynamic response (Boynton et al., 1996). Voxels that showed a
stronger response during epochs of stimulation (relative to fixation;
thresholded at p � 0.05 using the false discovery rate algorithm provided
in BrainVoyagerQX 1.9; the false discovery rate algorithm is a procedure
used to prevent multiple comparison problems while avoiding type II
errors prevalent in Bonferroni’s correction approaches; see Genovese et
al., 2002) were used to define functional regions of interest (ROIs) in V1.

Multivoxel pattern analysis. The purpose of multivoxel pattern analysis
(MVPA) and the forward encoding model is to estimate the influence of
attending multiple items on orientation selectivity in V1. Here, we as-
sumed that each voxel in V1 represents a large population of orientation-
selective cells, in which a BOLD response within a given voxel reflects the
pooled activity across a distribution of cells with dissimilar orientation
preferences. Therefore, any observed orientation bias within a given
voxel may reflect large-scale feature maps (Sasaki et al., 2006; Freeman et
al., 2011) or random anisotropies in the distribution of orientation-
selective columns within a voxel (Kamitani and Tong, 2005; Swisher et
al., 2010). Thus, the BOLD response measured from many of the voxels
in V1 exhibit a robust orientation preference (Haynes and Rees, 2005;
Kamitani and Tong, 2005; Serences et al., 2009b; Brouwer and Heeger
2011; Freeman et al., 2011).

To examine whether patterns of activation in V1 contained informa-
tion about the attended orientation, we first normalized the raw time
series from each voxel on a scan-by-scan basis using a z transform. Next,
mean BOLD responses were calculated across a time period extending
from 4 to 8 s after the onset of the stimulus on each trial, resulting in a
single BOLD response value for each trial, and these amplitude estimates
were sorted into one of eight orientation bins. Data from all but one scan
were then used to construct a “training” dataset that was used to train a
linear discriminant function to discriminate between different stimulus
conditions separately for each cortical hemisphere. The training set in-
cluded data from both set sizes. The trained classifier was then used to
decode the orientation of the sample stimulus on each trial within the
remaining scan (the “test” set). Data could be assigned one of eight
orientation labels, so chance discrimination accuracy was 12.5%. Mean
responses from each label were removed to spatially normalize the acti-
vation patterns. This analysis was iterated using a hold-one-out cross-
validation procedure until data from every scan had served as the test set.
This analysis was completed for each stimulus for contralateral (e.g., left
hemifield stimulus classified in right cortical hemisphere) and ipsilateral
(e.g., left hemifield stimulus classified in left cortical hemisphere) hemi-
spheres. For example, to estimate set size 1 classification accuracy in
contralateral ROIs, we aggregated single-trial classification accuracies
from (1) left V1 during attend right trials (eight trials per block) and (2)
right V1 during attend left trials (eight trials per block); conversely, to
estimate set size 2 classification accuracy in contralateral ROIs, we ob-
tained two classification values for each set size 2 trial (i.e., classification
in right hemisphere for left stimulus and classification in left hemisphere
for right stimulus) and aggregated these values across all set size 2 trials

(16 trials per block). Classification accuracies were then averaged across
each test set, yielding a single classification accuracy value for each set size
and cortical hemisphere (contralateral, ipsilateral).

Forward encoding model. To characterize orientation-specific re-
sponses in visual cortex, we used a forward encoding model of orienta-
tion selectivity. Our approach was similar to one described by Brouwer
and Heeger (2009, 2011), and we therefore adopt their terminology and
conventions. Briefly, this model assumes that each fMRI voxel in visual
cortex samples from a large number of orientation-selective neurons and
that the response of any given voxel is proportional to the summed
responses of all neurons in that voxel. Thus, one can characterize the
orientation selectivity of a given voxel as a weighted sum of N orientation
channels, each with an idealized tuning curve. We modeled the response
of each voxel using a basis set of eight half sinusoids (one per sample
angle) raised to the fifth power. These functions were chosen to approx-
imate single-unit tuning profiles in V1, where the 1/�2 half-bandwidth
of orientation-selective cells has been estimated at �20° (although there
is a considerable amount of variability in this estimate; Schiller et al.,
1976; Swindale, 1998; Ringach et al., 2002a,b; Gur et al., 2005).

To estimate orientation selectivity in V1 across variations in the dis-
tribution of attention across a variable number of items, we first normal-
ized and sorted the data into training and test sets (for details, see above,
Multivoxel pattern analysis). Thus, each training set had 224 observa-
tions for subjects who underwent eight runs in the scanner (7 runs in
training set � 32 trials). Critically, every run sampled from each orien-
tation equally. Similarly, the test set for these subjects had 32 observa-
tions. This analysis was completed for each ROI (left V1, right V1) and
each visual field (left, right) across all trials, regardless of target location
or set size. This ensured that the estimated weight profiles were unbiased
across conditions.

In the first phase of the analysis, data from the training set were used to
estimate weights on the hypothetical orientation channels separately for
each voxel. Using the terminology of Brouwer and Heeger (2009, 2011),
let m be the number of voxels in an ROI, k be the number of hypothetical
orientation channels, and n1 and n2 be the number of observations in the
training and test sets, respectively. The channel weights (W, m � k) can
be derived via least-squares estimation:

W � D1C1
T(C1C1

T) �1,

where D1 (m � n1) is the training set, and C1 (k � n1) is the basis set
discussed above. In the second phase of the analysis, channel responses
(C2, k � n2) were estimated given the weight matrix and responses in the
test set (D2, m � n2):

C2 � (WTW) �1WTD2.

The steps of the forward encoding procedure outlined so far were col-
lapsed across each stimulus, because parsing each condition and per-
forming the forward encoding procedure independently for each
stimulus condition would have biased estimation of channel weights.
Thus, there were an equal number of trials from both set sizes, including
the unattended stimulus, in the training set. Following the procedure
above, each estimated channel response function was then sorted based
on set size, and the columns in C2 were then circularly shifted so that the
channel aligned with the stimulus presented on each trial was positioned
in the center of orientation space, thereby aligning the estimated channel
responses to a common center (i.e., 0°). Channel response functions
from both stimuli in set size 2 trials were averaged together to form a
single-channel response function for set size 2. For example, when esti-
mating contralateral channel response functions, we averaged together
left hemisphere channel responses to the right stimulus and right hemi-
sphere channel responses to the left stimulus; similarly, when estimating
ipsilateral channel response functions, we averaged together left hemi-
sphere channel responses to the left stimulus and right hemisphere chan-
nel responses to the right stimulus. This analysis was repeated iteratively
until all scans had served as the test set and the results for each set size
were averaged. With respect to a given orientation value, this procedure
was repeated across both contralateral and ipsilateral ROIs.
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The purpose of this analysis was to reconstruct a separate orientation-
selective population response profile for each stimulus, although there
were always two stimuli presented. To this end, each possible orientation
value for the left stimulus was paired with all possible orientation values
of the right stimulus (across all the scans run for each observer). This
allowed us to yoke the analysis to a given stimulus while the channel
activity associated with the other stimulus was fully counterbalanced (see
above, Experimental task). As the results will show, this procedure suc-
cessfully allowed us to extract orderly tuning functions for each stimulus
presented, although the channel activity for any single trial was influ-
enced by two stimuli.

Note that this procedure makes no assumption regarding the shape
(e.g., Gaussian) of voxel-based tuning functions at the level of a single
voxel. Instead, this analysis models the response of each voxel as a com-
bination of responses across eight hypothetical orientation-selective
channels. Using this approach, any response profile may be observed at
the single-voxel level. Then, in the testing stage of the analysis, the known
weights across all voxels (computed during training) are used to con-
strain the estimate of the response in each channel given a vector of
responses across voxels on each trial in the test set. Thus, this approach is
generally more flexible than other approaches that assume a Gaussian
distribution of orientation responses within each voxel. However, note
also that the Gaussian-like CTF function (see below, Evaluating
population-level feature-selective tuning functions in V1) is influenced
by the use of a Gaussian-like basis set, because the basis functions overlap
and are thus partially correlated. However, similar results are obtained if
we use a basis set of orthogonal delta functions (“stick” functions) that
are not correlated.

Mutual information analysis. During the MVPA and forward model
analyses, we used an information-theoretic quantity known as mutual
information (MI) to rank-order voxels within each visual area based on
how well their responses in the training set discriminated between differ-
ent stimulus orientations [following an approach similar to that de-
scribed by Saproo and Serences, 2010 but using the kernel-density
estimation software developed by Alex Ihler (University of California,
Irvine, Irvine, CA), freely available at http://www.ics.uci.
edu/�ihler/code/kde.html, to estimate probability distributions].
Briefly, MI indexes information contained in the response distribution of
a voxel about stimulus orientation without making a priori assumptions
about the shape of the response distribution. This method ensured that
noisy voxels or voxels that did not show orientation selectivity, based on
only data from the training set, were excluded from the MVPA and
forward encoding modeling. Functional ROIs in V1 were defined using
the top 75% of voxels with the highest MI values.

Model predictions. As shown in Figure 2, perceptual coding and deci-
sion integration models make very different predictions regarding the
nature of the population response of orientation-selective cells in visual
cortex. On the one hand, perceptual coding models posit that the simul-
taneous encoding of visual items requires the distribution of a finite

resource, in which the perceptual quality of the stimulus degrades as
more items must be encoded at one time (Posner et al., 1980; Fisher,
1984; Bundesen, 1990; Zhang and Luck, 2008; Palmer et al., 2011). Ac-
cording to these models, the number of simultaneously attended items
should modulate the quality of the population response, such that a less
precise neural representation should be observed when distributing at-
tention across a greater number of items (Fig. 2B). Thus, these models
assume that observed set size effects result from a degradation of
orientation-selective responses. On the other hand, decision integration
models posit that perceptual noise is identical across large variations in
set size such that the quality of the stimulus at encoding is independent of
set size (Palmer, 1995; Palmer and McLean, 1995; Eckstein et al., 2000;
Verghese, 2001; Wilken and Ma, 2004). According to this class of models,
the quality of the population response is unaffected by the number of
items being attended at any given time; rather, noise arising from multi-
ple competing representations during the decision stage influence the
ability to accurately apprehend noisy internal representation. Under this
view, the probability of a single nontarget representation randomly
reaching criterion threshold increases as the number of noisy internal
representations increases, resulting in an observed set size effect attrib-
utable to decision-related noise. Thus, these models assume no influence
of set size on population responses in early visual cortex (Fig. 2A).

Results
Task performance behavioral training
In the staircasing procedure, we independently estimated change
detection thresholds during the monitoring of one or two flick-
ering gratings. The target event was a change in the orientation of
one of the attended gratings. If a subject correctly responded with
the direction of orientation change, the magnitude of angular
deviation for that condition (set size 1 or 2) decreased; con-
versely, if a subject responded incorrectly with the direction of
orientation change, the magnitude of angular deviation for that
condition increased. Thus, we recorded changes in angular devi-
ation thresholds between set sizes 1 and 2.

To estimate discrimination thresholds, we calculated the av-
erage angular deviation observed from 10 trials after the start of
the experiment (Fig. 3A, black dots represent individual subject
estimates, and error bars reflect within-subject error). Consistent
with previous studies, we found an effect of set size on detection

Figure 2. Model predictions. Predicted effect of set size on hypothetical orientation-
selective population response profiles for set size 1 (black) or set size 2 (gray) displays. According
to the decision integration model (left), the representational quality of each item is indepen-
dent of set size, leading to no difference in population response profiles. According to the
perceptual coding model (right), the quality of each item is determined by a limited neural
resource, in which the resource is divided more finely among a greater number of items; con-
sequently, this class of model predicts a decline in the selectivity of population responses.

Figure 3. Task performance. A, Performance during the staircasing procedure. Angular de-
viations were modulated separately for each set size, and detection thresholds were estimated
as the angular deviation required to reach 75% detection accuracy. Detection thresholds were
significantly lower for set size 1 trials compared with set size 2 trials ( p � 0.01). B, Task
performance during MRI. Angular deviations for both set sizes were yoked to detection thresh-
olds for set size 1 during the staircasing procedure. Accuracy in reporting the direction of angular
deviations was higher for set size 1 than set size 2 ( p � 0.01). Error bars represent within-
subject confidence intervals.
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thresholds (t(13) � 3.89, p � 0.01), in which attending two items
required a larger angular deviation to reach the same level of
performance as when attending one item.

Task performance: MRI
In the primary task, the magnitude of angular deviations across
conditions was yoked to set size 1 detection thresholds estimated
during the staircasing procedure. This method revealed a signif-
icant effect of set size on detection accuracy (t(13) � 9.47, p �
0.001; Fig. 3B). Thus, this procedure was sensitive to the known
performance costs of attending additional items.

Event-related BOLD response
Previous work has reported an effect of attention on overall
BOLD response magnitudes in V1 (Kastner et al., 1998; Gandhi et
al., 1999; Kastner and Ungerleider, 2000). This observation al-
lows us to set up predictions for the two competing models. Ac-
cording to the perceptual coding model, which posits that set size
effects result from a degraded response in early visual areas, we
should observe a larger BOLD response within a given ROI when
attending one item compared with attending two because fewer
attentional resources are allocated to each item with increasing
set size. According to the decision integration model, which pos-
its that set size effects arise from competition between multiple
noisy representations at the decision stage, we should observe no
effect of set size on BOLD activity within a given ROI because
unlimited processing capacity allows each item to receive the
same amount of resources independent of set size. In line with the
predictions of the perceptual coding model, we observed a signif-
icant effect of set size (F(1,13) � 8.21, p � 0.05) on the evoked
BOLD response (Fig. 4) such that the BOLD response was re-
duced when monitoring two items compared with monitoring
one item. This finding mirrors that of Pestilli et al. (2011), who
found that attending one item evoked a larger BOLD amplitude
than when attending four. Furthermore, because the activation of
the hemodynamic response requires several seconds to initiate,
the hemodynamic response functions indicates no difference be-
tween set sizes until peak amplitude is reached, at which point the
set size effect is evident; this effect elicits a significant interaction
between set size and time was observed (F(10,4) � 5.47, p � 0.01).

As a result of this difference around the peak, all subsequent
analyses focused on response patterns measured 4 – 8 s after stim-
ulus onset, which demonstrated a similar set size effect (t(13) �
6.44, p � 0.001). The BOLD response evoked by the unattended
stimulus was also reduced relative to set size 1 (t(13) � 3.28, p �
0.01) and set size 2 (t(13) � 2.35, p � 0.05) trials. Critically, al-
though an effect of set size was observed in the hemodynamic
response function epoch, this effect did not predict set size effects
in behavior (R 2 � 0.03, t(13) � 0.60, p � 0.28). Here again, this
finding echoes that of Pestilli et al. (2011), who found that the
observed changes in BOLD amplitude were insufficient to ex-
plain the observed declines in behavior as set size increased. How-
ever, as our subsequent analyses will suggest, the null result we
obtained may reflect a limitation in the sensitivity of univariate
analyses to qualitative changes in target-related sensory codes.

Multivoxel pattern classification
Next, we examined whether orientation information could be
decoded from the pattern of BOLD-related responses across V1.
If the quality of a given representation degrades with the addition
of multiple attended items as predicted by the perceptual coding
model, then we should observe a decline in decoding accuracy for
that representation in V1. The results of the MVPA analysis on
both condition (set sizes 1 and 2) and hemisphere (contralateral,
ipsilateral) are depicted in Figure 5. Classification accuracy de-
clined reliably as set size increased (F(1,13) � 8.96, p � 0.01) but
was equivalent between contralateral and ipsilateral hemispheres
(p � 0.98). This latter result corroborates past work showing the
spatially global (i.e., bilateral) character of stimulus-specific ac-
tivity even when a lateralized stimulus is encoded (Serences and
Boynton, 2007; Ester et al., 2009). In other words, previous work
has shown that, during both encoding and storage in working
memory, lateralized stimuli are represented in both the left and
right hemispheres (Jehee et al., 2011). Thus, in a task like ours
with stimuli presented in both the right and left visual fields, we
expect to see both a contralateral and an ipsilateral representation
of each stimulus, such that the neural representations of these

Figure 4. Event-related analysis of BOLD signal. The mean BOLD response was estimated
from the 75% most selective voxels in V1 for both set sizes. The solid black window represents
the duration of the stimulus display. Data are collapsed across stimulus orientation. BOLD re-
sponses were significantly higher for set size 1 (SS1) trials than set size 2 (SS2) trials during the
main analysis window (gray shaded window; p � 0.01). BOLD responses were lowest for the
unattended stimulus (Ign). Error bars represent between-subject confidence intervals.

Figure 5. Multivoxel decoding analysis. A classification algorithm was trained to recognize
orientation-selective patterns from voxels within each V1 ROI and then inferred the orientation
of the attended stimulus. The horizontal dashed line at 0.125 indicates chance classification
accuracy. Above-chance classification accuracy was observed for both set sizes and ROIs (con-
tralateral, ipsilateral). Classification accuracy was higher for set size 1 trials than set size 2 trials,
although no difference was observed between ROIs within each set size. Error bars represent
between-subject confidence intervals.
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stimuli are interleaved across both sides of visual cortex (and in
cortical regions responsive to locations outside of the retinotopic
positions associated with the stimuli). All conditions were signif-
icantly above chance (p � 0.01). Critically, left- and right-field
stimulus orientations were counterbalanced across trials. Thus,
this finding cannot be explained by covariations in stimulus ori-
entation across hemifields. These MVPA results are consistent
with the hypothesis that the precision of perceptual representa-
tions declines as the number of to-be-attended items increases
because the reliability of stimulus decoding concurrently de-
clines. Supporting this inference, we observed a link between
declines in stimulus decoding (subtracting classification accuracy
for set size 2 from set size 1) and behavioral accuracy, in which
larger set-size-dependent declines in decoding accuracy pre-
dicted similar declines in behavioral accuracy (R 2 � 0.31, p �
0.05).

However, although MVPA is a valuable tool for inferring the
attended feature value across a population of weakly selective
voxels, this method is limited in its ability to reveal how the
sensory population response was influence by the requirement to
attend an additional item. Specifically, we can only conclude
from this analysis that the patterns of activation associated with
each stimulus became less linearly separable as set size increased,
whereas the underlying mechanism leading to the poorer classi-
fication accuracy is not specified. For example, worse classifica-
tion accuracy might emerge as a result of decreases in the overall
amplitude of orientation-selective population response profile or
a decrease in the selectivity of the population response profile;
both alternatives can explain the observed link between declines
in decoding accuracy and behavior. Thus, we used a forward
encoding model to provide a clearer understanding of how
population-level feature-selective tuning functions are affected
when attention is distributed across multiple items.

Evaluating population-level feature-selective tuning
functions in V1
So far, we have demonstrated reliable set size effects in behavioral-
and BOLD-related responses during a perceptual monitoring
task. To better understand the source of these set size effects, we
now turn to the results of the forward encoding model, which
estimates population-level orientation-selective responses based
on patterns of activation measured in V1 during our experimen-
tal task. These response patterns were estimated using a forward
encoding model of orientation selectivity (Brouwer and Heeger,
2009; Serences and Saproo, 2012; see forward encoding model)
for both contralateral and ipsilateral hemispheres. As reported in
the multivoxel pattern classification above, stimulus-specific in-
formation was reliably decoded in both contralateral and ipsilat-
eral hemispheres. Therefore, we implemented a similar approach
by examining orientation-selective populations responses in
both contralateral and ipsilateral ROIs. Because the MVPA was
suggestive of a spatially global, stimulus-specific representation
(Serences and Boynton, 2007; Ester et al., 2009; Jehee et al., 2011),
we anticipated a clear population tuning function centered over
the channel preferring the attended orientation for both set sizes
and hemispheres (i.e., contralateral and ipsilateral). As shown in
Figure 6, we observed a graded orientation-selective profile of
channel activations that peaked in the channel corresponding to
the orientation attended during the monitoring task in both con-
tralateral (Fig. 6A) and ipsilateral (Fig. 6B) hemispheres.

In contralateral hemisphere (Fig. 6A), there is an apparent
attenuation of on-channel responses (channels at or near the
attended feature value, e.g., �0, 22.5) and an increase in off-

channel responses (channels farther from the attended feature
value, e.g., �67.5, 90) when monitoring more than one grating.
This observed pattern was supported by an ANOVA, which re-
vealed a significant condition (set size 1, 2) � channel interaction
(F(2.0,26.1) � 4.52, p � 0.05; Greenhouse–Geisser corrected).
Given that the effective allocation of attention simultaneously
maximizes neuronal firing rates of on-channel cells and mini-
mizes neuronal firing rates of off-channel cells (Treue and
Martinez-Trujillo, 1999; Martinez-Trujillo and Treue, 2004), the
observed pattern of results suggests that distributing attention
across multiple items leads to an overall loss of selectivity in the
population response in regions of visual cortex contralateral to
the attended stimulus. We also modeled patterns of activation in
ROIs ipsilateral to the attended stimulus (Fig. 6B) and observed
no condition � channel interaction (p � 0.67). However, direct
comparison of contralateral and ipsilateral responses revealed a
main effect on channel responses (F(1,13) � 11.82, p � 0.01), such
that channel responses were smaller in the ipsilateral relative to
the contralateral hemisphere.

The critical result here is the loss of selectivity in the popula-
tion response profile contralateral to the attended stimulus in the
set size 2 condition. We considered whether this effect could be
explained by contamination from the channel activity associated
with the ipsilateral stimulus in the set size 2 condition rather than
by a true change in the selectivity of the contralateral population
response. That is, we considered whether— given that the re-
sponse to the ipsilateral stimulus was amplified by attention in
the set size 2 condition relative to the set size 1 condition—the
activity associated with the ipsilateral stimulus could have yielded
an artifactual change in the shape of the tuning function for the
contralateral stimulus. However, one problem for this explana-
tion is that the amplitude of channel activity at the target value
(i.e., on-channel activity) in the set size 2 condition was reliably
lower than in the set size 1 condition, consistent with past obser-
vations that attenuated feature-based selection yields relative de-
clines in on-channel responses and increases in off-channel

Figure 6. Population-level orientation-selective responses. A forward encoding model was
used to generate orientation-selective population response profiles for each stimulus in the
display based on patterns of activity observed in V1. This analysis revealed a similar pattern
across set sizes and ROIs (contralateral, ipsilateral): a clear population tuning function emerged
that peaked at the channel centered over the orientation of the stimulus and decreased mono-
tonically as the angular distance from this orientation increased. A, Population tuning functions
observed in contralateral hemisphere (collapsed across left and right hemifield stimulus pre-
sentations) for set size 1 (black; SS1) and set size 2 (gray; SS2) trials. B, Population tuning
functions observed in ipsilateral hemisphere (collapsed across left and right hemifield stimulus
presentations) for set size 1 and set size 2 trials.

9278 • J. Neurosci., May 29, 2013 • 33(22):9273–9282 Anderson et al. • Set Size Effects on Population Responses



responses (Treue and Martinez-Trujillo, 1999; Martinez-Trujillo
and Treue, 2004; Scolari et al., 2012). In contrast, the putative
contamination by the ipsilateral stimulus considered here should
have yielded a uniform increase in activity across all channels
because the orientation of the ipsilateral stimulus was fully coun-
terbalanced with respect to the contralateral stimulus. Thus, al-
though the presence of the ipsilateral stimulus could have led to
increases in off-channel activity, this alternative explanation can-
not account for the observation that on-channel and off-channel
activity showed opposite effects of attending an additional item.
In addition, we report below that these changes in on-channel
and off-channel activity for the contralateral stimulus predicted
the behavioral cost of attending an additional item; this correla-
tion is also inconsistent with an artifactual source of the observed
changes in the CTF. Thus, contamination from the ipsilateral
stimulus is unlikely to explain the observed reduction in the se-
lectivity of the CTF in the set size 2 condition.

Another explanation for the observed pattern of results is that
subjects simply fixated the to-be-attended stimulus on set size 1
trials. To examine this possibility, we examined the eye-tracking
data recorded during the experimental task. Specifically, we com-
puted the mean x, y position of saccades (defined here as stable
fixations lasting �200 ms outside a 0.50° centered on fixation) as
a function of target location (left vs right visual hemifield) during
set size 1 trials. We failed to observe a difference in horizontal eye
position between set size 1 conditions in which subjects had to
attend the item on the left or right (t(5) � 0.57, p � 0.61) and both
the attend left (t(5) � 1.40, p � 0.26) and attend right (t(5) � 0.04,
p � 0.97) conditions did not differ significantly from the set size
2 condition in which both items were attended. Thus, our results
cannot be explained by different patterns of eye positions across
manipulations of set size.

Reductions in orientation selectivity predict
behavioral performance
A key question is whether or not the observed changes in the
profile of channel responses were linked with the observed
changes in behavioral performance. Thus, we examined whether
the set-size-dependent difference in each channel response pre-
dicted the observed cost in behavioral accuracy. First, because
channel response functions were symmetric (Fig. 6), we collapsed
channel response functions across orientation channels equally
distant from the target orientation channel (e.g., 	45° and 45°
orientation channels). Then, we calculated the difference in
channel responses between set sizes for every orientation channel
(Fig. 7). This was estimated by subtracting the channel responses
in set size 2 from the channel responses in set size 1. Thus, a
positive channel difference reflects a larger channel response in
set size 1 for any given channel, and a negative channel difference
reflects a larger channel responses in set size 2 than for set size 1.
As can be seen in Figure 7A (and Fig. 6A), there was an overall
reduction in on-channel responses and an overall increase in
off-channel responses when attending two items compared with
when attention was focused on a single item. This analysis sug-
gests that distributing attention to multiple items effectively re-
duces orientation selectivity during perception by suppressing
on-channel responses and enhancing off-channels responses in
set size 2 relative to set size 1 trials.

We then used this channel response difference measure to
determine whether observed costs in orientation selectivity pre-
dict individual difference in the behavioral cost of attending an
additional item. If distributing attention across multiple items
effectively reduces the quality of orientation-selective represen-

tations measured in V1, then we should observe an orderly rela-
tionship between the shape of channel difference functions and
the relative cost of attending multiple items. Specifically, individ-
uals who evoke a larger gradient in channel response differences
as a function of orientation channel should demonstrate a larger
cost in behavioral accuracy when attending two items relative to
one item because feature selectivity declines as the overall differ-
ence between on-channel and off-channel responses in channel
difference functions increases. Consider the consequence of re-
ducing or increasing on-channel or off-channel responses, re-
spectively, on the quality of the information available during
perception. On the one hand, by reducing on-channel popula-
tion responses when attention must be allocated to more than
one item, the strength of the signal derived from neural popula-
tions tuned toward the attended stimulus decreases and the over-
all activity level in on-channel cells is more similar to the baseline

Figure 7. Loss of feature selectivity in population responses. A, B, Channel differences were
estimated by subtracting channel responses in population tuning functions observed in set size
2 trials from those observed in set size 1 trials for contralateral (A) and ipsilateral (B) hemi-
spheres. Positive channel differences represent larger channel responses for set size 1 popula-
tion tuning functions; negative channel differences represent larger channel responses for set
size 2 population tuning functions. For contralateral ROIs, a loss of selectivity associated with
attending multiple items was observed—represented as a reduction in on-channel responses
and increase in off-channel responses for set size 2 compared with set size 1 population tuning
functions—whereas no loss of selectivity was observed in ipsilateral ROIs. C, D, Individual
differences in the loss of feature selectivity predict declines in behavioral performance. Differ-
ences in behavioral accuracy (set size 1 	 set size 2) were plotted as a function of channel
modulation in both contralateral (C) and ipsilateral (D) ROIs. For contralateral ROIs, chan-
nel modulation predicted behavioral costs in accuracy, such that a more negative slope in
channel differences (A) corresponded to a larger set-size-dependent cost in accuracy ( p �
0.01). This link was not observed in ipsilateral ROIs ( p � 0.41).
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level of activity. On the other hand, by increasing off-channel re-
sponses when attention must be allocated to more than one item, the
activity level of neural populations tuned away from the attended
stimulus feature increases relative to baseline and the overall activity
level in off-channel cells is more similar to the activity level of
neural populations tuned toward to the attended stimulus fea-
ture. Together, decreases in on-channel responses (i.e., a positive
channel difference value) and increases in off-channel responses
(i.e., a negative channel difference value) are indicative of de-
clines in feature selectivity. To quantify the magnitude of declines
in feature selectivity, we calculated a channel modulation value
by computing the slope of channel response differences as a func-
tion of orientation channel.

In line with the hypothesis that set-size-dependent declines in
feature selectivity drive the concurrent declines in behavioral per-
formance, we observed a strong link between channel modula-
tion and accuracy costs such that individuals who evoked a larger
decline in feature selectivity— defined as a more negative channel
modulation value—were more likely to demonstrate a larger re-
duction in accuracy when attending multiple items. Importantly,
this relationship was only present in cortical ROIs contralateral to
the attended stimulus (Fig. 7C; R 2 � 0.45, p � 0.01), whereas no
relationship was observed in ipsilateral ROIs (Fig. 7D; R 2 � 0.06,
p � 0.41). Thus, in line with perceptual coding models, observed
set size effects in behavioral performance are attributable to a
reduction in the selectivity of orientation-specific neural popula-
tions in V1 during perception.

Discussion
There is active debate regarding the processing locus of declines
in performance with concurrent increases in set size. Perceptual
coding models posit that the quality of stimulus representations
is constrained by the distribution of a finite neural resource (Pos-
ner et al., 1980; Fisher, 1984; Bundesen, 1990; Palmer et al., 2011),
such that increased set sizes reduces the resources for each item,
yielding declines in representational quality. Conversely, deci-
sion integration models posit that the internal noise represented
in sensory cortices is independent of set size and that reported set
size effects arise from competing noisy representations during
post-perceptual decision stages of information processing
(Palmer, 1995; Palmer and McLean, 1995; Eckstein et al., 2000;
Verghese, 2001).

In the current work, we estimated population-level, orientation-
selective responses in V1 during a perceptual monitoring task
requiring the distribution of attention to one or two visual stim-
uli. We observed a loss of orientation selectivity when more than
one item was attended. Specifically, there was a relative increase
and decrease of off-channel and on-channel responses, respec-
tively, which broadened the distribution of orientation-selective
responses. Thus, these findings provide a mechanistic explana-
tion of why decoding results from the MVPA showed a decline in
accuracy with set size. Moreover, we observed that the degree to
which channel responses were affected by set size predicted costs
in behavioral accuracy for each observer in the study. Thus, our
findings show a strong relationship between the declining preci-
sion in the orientation population response for attended items
and the known behavioral costs of attending additional items.

The main conclusion of the current work must be reconciled
with recent work demonstrating support for decision integration
models (Pestilli et al., 2011). These authors measured univariate
patterns of BOLD-related activity in striate and extrastriate visual
areas during a contrast-discrimination task requiring the alloca-
tion of focal or distributed attention. In this task, subjects were

presented with four gratings of variable contrast in each visual
quadrant and were required to detect a change in the contrast of
a single grating between two presentations of the same display.
The shape of the BOLD contrast response functions in the focal
and distributed attention conditions failed to support perceptual
coding models because (1) behavior could not be explained via
response enhancement during focal attention because no change
in the slope of BOLD contrast response function was observed
and (2) behavior could not be explained via noise reduction dur-
ing focal attention because a quantitative model constrained by
the psychophysical data was used to show that neural responses
would need to undergo an unreasonably high reduction in noise.
The authors then demonstrated that behavior was well described
by a weighted pooling across responses to each stimulus, consis-
tent with a decision integration account of efficient selection.

However, the empirical pattern observed by Pestilli et al.
(2011) could arguably be task specific in that their contrast-
discrimination task encouraged sensory pooling as an optimal
strategy. Specifically, observers were required to indicate which
frame contained a higher contrast target. This task may have been
conducive to a pooling strategy in which a single representation
reflecting average contrast was computed and compared across
frames, and then observers selected the frame with the higher
average contrast. In contrast, in the current work, observers were
required to maintain individuated representations of multiple
stimuli throughout the entire trial to detect an unpredictable
change in stimulus orientation. Therefore, we argue that, in situ-
ations that require the precise encoding of multiple individuated
representations, changes in behavioral performance can be well
accounted for via changes in the precision of feature-selective
sensory responses.

Multiple studies have demonstrated a relative enhancement
of on-channel and suppression of off-channel neural response
properties when attending to a single stimulus (Treue and
Martinez-Trujillo, 1999; Martinez-Trujillo and Treue, 2004; Sco-
lari et al., 2012), suggesting that attention increases the selectivity
for attended features by increasing the responses of neurons pre-
ferring the attended feature value while decreasing responses of
neurons tuned to the orthogonal feature value. Within the scope
of these studies, our results suggest that attending multiple items
encumbers a neural resource that drives the distinction between
neural populations tuned either toward or away from the at-
tended feature value. These findings are in line with perceptual
coding models that predict that attending multiple items de-
grades the quality of perceptual representations. Thus, although
our findings do not exclude the possibility of increased decision
noise with larger set sizes (Palmer, 1995; Palmer and McLean,
1995; Eckstein et al., 2000; Verghese, 2001), our findings demon-
strate that attending more items has a direct impact on the quality
of perceptual codes and that these changes in perceptual quality can
account for the associated declines in visually guided behavior.

Our results suggest that the selectivity of population responses
in sensory cortical regions declines with increases in the number
of attended items. Increases in perceptual noise during stimulus
encoding would effectively degrade the fidelity of information
transmission and processing in cortical units (Pouget et al.,
2003), which would lead to lower-quality population responses
and compromised stimulus decoding. One possible explanation
of this decline in the precision of population responses comes
from a class of computational models in which multiple items are
represented by oscillatory phase coding mechanisms (Lisman
and Idiart, 1995; Singer and Gray, 1995; Roelfsema et al., 1996;
Jensen and Colgin, 2007; Canolty and Knight, 2010). According
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to these phase coding models, subpopulations of feature-selective
cells code the details of a single representation through synchro-
nized neural activity (Gray et al., 1989; Engel et al., 1991; Fries et
al., 2001; for review, see Fries 2005; Siegel et al., 2008). To indi-
viduate each representation, the phase of each subpopulation of
feature-selective cells is decoupled and maintained as asynchro-
nous neural assemblies (Gray et al., 1989; Engel et al., 1991; Ro-
elfsema et al., 1996; Eckhorn et al., 1998). Under this view,
declines in the integrity of population responses may result from
sensory units firing out of phase with their respective neural as-
sembly and in phase with a different neural assembly. Thus, the
probability of a given sensory unit firing in phase with a separate
neural assembly would increase with the number of to-be-
attended representations, leading to a decline in the precision of
population responses.

A similar brand of phase coding models has been proposed for
the maintenance of visual working memory representations (Lis-
man and Idiart, 1995; Raffone and Wolters, 2001), suggesting
that similar declines in perceptual and mnemonic precision
should be observed with increases in item load. Indeed, multiple
studies have demonstrated an inverse relationship between mne-
monic precision in visual working memory and set size (Wilken
and Ma, 2004; Zhang and Luck, 2008; Anderson et al., 2011;
Anderson and Awh, 2012). Thus, it is possible that a similar os-
cillatory coding scheme explains how items are individuated dur-
ing both perception and memory and that declines in mnemonic
precision with increasing set size are also attributable to increased
dispersion in the population responses for items stored in mem-
ory (for a recent demonstration of declines in decoding accuracy
as a function of set size, see Emrich et al., 2013).

The forward encoding model used here provides a powerful
complement to standard MVPA methods by generating an esti-
mate of the feature-selective population response profile based
on a set of a priori, physiologically plausible assumptions. For
instance, although an MVPA in the current study revealed iden-
tical classification accuracies for contralateral and ipsilateral
hemispheres in both set size conditions, confirming past obser-
vations of spatially global mnemonic and perceptual codes (Ser-
ences and Boynton, 2007; Ester et al., 2009), the forward
encoding model revealed a reduction in the amplitude of channel
responses in ipsilateral relative to contralateral cortex. Thus, the
forward encoding model revealed a basic distinction between
population responses in contralateral and ipsilateral hemispheres
that was invisible to the MVPA.

To conclude, we investigated the neural locus of declines in
behavioral performance across concurrent increases in set size
during a perceptual monitoring task. We measured orientation-
selective population response profiles in human V1 by using a
combination of fMRI and a forward encoding model of orienta-
tion selectivity. In line with the central tenant of perceptual cod-
ing models (Posner et al., 1980; Palmer et al., 2011), we observed
a quantifiable attenuation in the selectivity of population re-
sponses that predicted the degree to which accuracy declined as a
function of set size. This finding lends confidence to claim of
perceptual coding models that the quality of encoded represen-
tations is constrained by the distribution of a finite neural re-
source and that attending multiple items requires a finer
distribution of this limited resource. Thus, the current work pro-
vides a novel insight into the neural source of decline in behav-
ioral performance when multiple items must be simultaneously
attended.
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