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The Detection of Visual Contrast in the Behaving Mouse
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The mouseis becoming akey species for research on the neural circuits of the early visual system. To relate such circuits to perception, one
must measure visually guided behavior and ask how it depends on fundamental stimulus attributes such as visual contrast. Using operant
conditioning, we trained mice to detect visual contrast in a two-alternative forced-choice task. After 3—4 weeks of training, mice per-
formed hundreds of trials in each session. Numerous sessions yielded high-quality psychometric curves from which we inferred mea-
sures of contrast sensitivity. In multiple sessions, however, choices were influenced not only by contrast, but also by estimates of reward
value and by irrelevant factors such as recent failures and rewards. This behavior was captured by a generalized linear model involving
not only the visual responses to the current stimulus but also a bias term and history terms depending on the outcome of the previous trial.
We compared the behavioral performance of the mice to predictions of a simple decoder applied to neural responses measured in primary
visual cortex of awake mice during passive viewing. The decoder performed better than the animal, suggesting that mice might not use

optimally the information contained in the activity of visual cortex.

Introduction
In the quest to understand the relationship between neuronal
activity and visual perception, an essential tool is the ability to
measure visual performance in well controlled behavioral tasks.
Such measurements are typically obtained through operant con-
ditioning in monkeys, whose visual system most resembles that of
humans, and are particularly fruitful when combined with re-
cordings or perturbations of neuronal activity (Newsome et al.,
1989; Britten et al., 1992; Nienborg and Cumming, 2010).
There is increasing interest in applying similar methods to the
mouse. Mice have a simpler visual system than primates, with
lower spatial acuity and simpler cortical micro-architecture
(Chalupa and Williams, 2008). Nonetheless, mice are gaining
popularity in visual neuroscience because of the readily available
molecular and genetic tools. These tools allow cell-type-specific
neurophysiology (Sohya et al., 2007; Kerlin et al., 2010; Runyan et
al., 2010; Bock et al., 2011) and exquisite control of neuronal
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activity (Huber et al., 2008; Cardin et al., 2009), and thus provide
powerful approaches for resolving longstanding debates.

Mouse vision can be assessed behaviorally using practical and
robust methods (Pinto and Enroth-Cugell, 2000). Some of these
methods involve measurements of reflexive movements of eye or
body induced by drifting gratings surrounding the animal
(Prusky et al., 2004; van Alphen et al., 2009). Other methods
involve training the mouse to swim in a water maze toward a
submerged platform, indicated by a visual stimulus (Prusky et al.,
2000; Prusky and Douglas, 2004).

These methods, however, have some disadvantages. The tech-
niques based on reflexive movements are restricted to large mov-
ing stimuli and therefore cannot assess spatial vision; they do not
probe cortical function (Douglas et al., 2005) and could hardly be
used to investigate cognitive influences on visual processing. The
swimming task, meanwhile, yields only a few dozen trials per day
and cannot easily be paired with simultaneous recordings of
brain activity.

We sought to overcome these limitations by measuring psycho-
metric curves for two-alternative forced choice (2AFC) in freely
moving mice. By adapting methods from various laboratories inves-
tigating sensory behavior in the rat (Kepecs et al., 2008; Yang et al.,
2008; Meier et al., 2011), we trained mice to routinely perform hun-
dreds of trials per session in a visual detection task. We analyzed the
resulting psychometric curves using classical psychophysical meth-
ods to infer measures of contrast sensitivity.

While many sessions yielded high-quality psychometric curves,
other sessions produced responses with large biases and high error
rates. In such sessions, mice followed suboptimal strategies influ-
enced by nonvisual factors such as past choices and expecta-
tions of reward. To account for such strategies, we developed a
simple model by drawing from theories of value-based deci-
sion making (Corrado et al., 2005; Lau and Glimcher, 2005).
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The resulting model captures the strategies and yields an esti-
mated internal representation of stimulus contrast.

Finally, we compared visual behavior to predictions of a sim-
ple decoding model applied to responses of mouse primary visual
cortex measured during passive viewing. The decoding model
performed generally better than the mice, suggesting that the
mice might make only suboptimal use of the information con-
tained in the neural responses.

Materials and Methods

All experimental procedures were conducted according to the US Na-
tional Institutes of Health Guidelines for the Care and Use of Animals for
Experimental Procedures and to the UK Animals Scientific Procedures
Act (1986). Experiments were performed at University College London
under personal and project licenses released by the Home Office follow-
ing appropriate ethics review.

Animals. Seven wild-type (C57BL/6]) and five transgenic (two HHrt-
TAXK and three TRE/ASTBDN-1) mice performed a visual contrast-
detection task for fluid reward. Two of these mice were males, the others were
females. The transgenic animals were used as controls for a separate project
aimed at studying retinal neovascularization and did not exhibit any retinal
abnormalities (Wall et al., 2004). At the beginning of training, animals were
between 2 and 8 months old; at the end of testing, they were between 15 and
16 months. The mice were kept on a 12 h light/dark cycle and tests were
performed during the light cycle. An additional group of seven wild-type
mice (C57BL/6]) were used for electrophysiological experiments.

Water control. Animals in the behavioral study had ad libitum access to
water only during weekends (typically Friday afternoon to Sunday after-
noon). During the rest of the week, they obtained water by performing
the task. Signs of possible dehydration were monitored (reduced skin
tension, sunken eyes, and marked variations in general behavior) and
were absent in all animals. To ensure adequate hydration, we weighed
each animal at the beginning and end of each experimental session and
compared the weight to a standard weight updated weekly. If weight
measured after the session was <90% of the standard weight, the animal
would be temporarily taken out of the study and given ad libitum access
to water until the weight recovered. This condition never occurred.

Apparatus. The choice box (Fig. 1A,B) was a translucent chamber
facing an LCD screen (HX192D Hanns.G; mean luminance 110-140
cd/m?, refresh rate 60 Hz). The box was divided by translucent walls into
three connected areas, each centered on a port: a central port and two
choice ports. Each port consisted of a hole large enough to accommodate
the animal’s snout (1.25 cm diameter). The presence of the snout was
monitored by an infrared beam. In front of the hole, a small spout deliv-
ered water. Water pressure was obtained by placing the source ~50 cm
above the chamber. Reward volume was controlled by solenoid valves
(161T010; Neptune Research). Sound speakers attached to the stimulus
monitor gave auditory feedback signals during key states of the experi-
ment. Mouse behavior was monitored through a network camera (Link-
sys; Cisco). This setup was enclosed in a cabinet (Ikea) that provided
some sound and light isolation from the surroundings. Software for ex-
perimental control and stimulus presentation was custom written in
Matlab (MathWorks) with extensions from the Psychophysics toolbox
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).

Task. We used a two-alternative forced-choice (2AFC) task to measure
contrast thresholds. The mouse started each trial by inserting its snout
into the central port. Upon breaking the infrared beam, it received ~3 ul
of water and a circular window containing a vertical grating was pre-
sented 40° to the right or to the left. The grating drifted until the mouse
retracted its snout from the central port, and remained stationary there-
after. The grating’s spatial and temporal frequency were set to the opti-
mum values found in studies of reflexive optomotor behavior: 0.13
cycles/deg and 1.5 Hz (Umino et al., 2008). Grating contrast varied from
trial to trial between 10% and 100%. Grating position (left or right)
changed randomly from trial to trial. To avoid learning of spurious pat-
terns in behavior, we reduced the probability of more than three succes-
sive stimulus repetitions on the same side or three successive stimulus
alternations between sides. The task of the mouse was to nose-poke the
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Figure 1. Apparatus and training. 4, Scheme of the behavioral choice hox. B, Picture show-

ing the mouse triggering stimulus presentation by placing the snout in the central port. ¢, Mice
learn the visual contrast detection within 3— 4 weeks of training. Mice were trained for 1 week
in stage 2 and 3 weeks in stage 3. Dashed lines indicate chance performance. On days 1-5,
chance is 33% for a naive mouse, 50% for a mouse that understands the basic task. N = 3.D,
Heavier mice performed more trials per session. Each data point represents a single animal (N =
12). Relation between average number of trials per session and average body weight (r = 0.78,
p < 0.01). Open and filled circles indicate females (N = 10) and males (N = 2), respectively.
Line is given by linear regression.

choice port corresponding to the stimulus location. Upon a correct
choice, it received a reward of 6—8 ul of water. Upon an incorrect choice,
it received a 6 s timeout accompanied by a Gaussian noise sound, during
which a new trial could not be initiated. This timeout condition also
occurred when the mouse did not initiate a trial within 60 s or did not
poke a choice port within 30 s of leaving the central port. On each exper-
imental day, mice performed one to three sessions of 15-40 min each.
Average response times in correct trials tended to decrease with increas-
ing stimulus contrast, resulting in significant negative correlation coeffi-
cients for 11 of 12 animals (Spearman rank correlation, average across
animals p = —0.29 = 0.16 SD, p < 0.001).

Training. Training was performed in three stages. In the first stage (1-2
d), the mouse learned to explore the choice box and obtain fluid from the
ports, and formed a positive association with the reward sound. A sta-
tionary grating was presented at each port and the mouse was rewarded
with alarge amount of water (16 ul) for inserting its snout into any of the
three ports. The stimuli then disappeared and a new trial initiated auto-
matically soon afterward. In the second stage (<1 week), the mouse was
exposed to the different trial outcomes (reward vs timeout), formed
negative associations with the timeout sound, and learned that it is es-
sential to change ports to collect rewards. In each trial, the grating was
presented at only one of the ports and the mouse was rewarded only for
choosing that port. The grating was repeated at the same location until
the mouse collected the reward. After a success, the grating was always
presented at one of the other ports. After incorrect behavior, there was a
timeout of 1.8 s. The animal was promoted to the next training stage
when it frequently chose different ports. In the third stage (2-3 weeks),
the mouse learned the remaining skills: to initiate a trial in the central
port, to associate visual stimuli with reward, and to indicate choice by
poking the appropriate port. All aspects of the behavioral task were now
the same as in the final task, except that (1) the mouse received the same
amount of water in the central port (for initiating the trial) as in the
choice port (for giving the correct answer) and (2) the timeout following
incorrect choices was short (2.5 s). Gradually, these two variables were
brought toward their final value. This training phase was over when the
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animal’s performance had risen from 50% (chance value) to 80-90%;
when this happened, stimuli of lower contrast were introduced.

Data processing. Sessions with <10 trials were excluded. If a session
contained three or more consecutive trials in which the mouse did not
initiate the task or did not give a response, we deemed the mouse to have
lost motivation and we ignored the remaining trials. We concatenated all
data obtained within a day and used it for further analyses if it contained
at least 50 trials.

Psychometric analysis. For the psychometric analysis, we considered all
trials except those that ended in a timeout. We calculated the percentage of
rightward choices as a function of signed contrast ¢, where negative or posi-
tive contrast denotes trials in which the stimulus was presented on the left or
right side. We fitted these data with the psychometric function

Pl(c) = A + (1 — 2A) F(cp,0), (1)

where F(x) is a cumulative Gaussian. The parameters w and o represent
the mean and standard deviation of the underlying Gaussian, respec-
tively, and determine the left-right bias and slope of the psychometric
function. The parameter A represents the lapse rate. This function was
fitted via maximum likelihood estimation using psignifit (Wichmann
and Hill, 2001a). We defined threshold as the standard deviation of the
Gaussian. Confidence intervals of the parameters were found by the
bootstrap method based on 2000 simulations (Wichmann and Hill,
2001b).

Likelihood analysis. To obtain an overall estimate of contrast threshold
for each animal, we calculated the likelihood of each contrast represent-
ing the true contrast threshold. For each session i, we computed the
estimated mean ¢; and standard error e; of the contrast threshold via
bootstrapping (Wichmann and Hill, 2001b). For simplicity, we assumed
that the resulting distribution was Gaussian, G[c;, ¢;]. We then computed,
for each contrast, the likelihood L of the true contrast threshold being c by
multiplying the probabilities of observing ¢ across sessions:

L(c) = Glenel(c) X Glepe,](c) X ... X Glepe (), (2)
The value of contrast threshold ¢ that we report for each animal is the one
that maximized this likelihood.

Probabilistic choice model. To account for nonsensory factors that con-
tribute to the behavioral responses, we used a probabilistic model, a
generalized linear model. In the model, the observer makes a decision by
tossing a coin (i.e., by sampling from a Bernoulli distribution) with prob-
ability p of heads (going right) and I — p of tails (goingleft). The log odds
of the fairness of the coin is determined by a decision quantity z that is
positive if the observer is inclined to go right, and negative if it is inclined
to go left. The relation between p and z s given by the sigmoidal (logistic)
function

1
PT4 e

(3)

In each trial ¢, the decision quantity z depends on the signed contrast in
the present trial, ¢(), and on the success, s(f — 1), and failure, f{(t — 1), in
the preceding trial:

z(t) = v[c()] + bs(t — 1) + bf(t — 1) + by, (4)

where v weighs the stimulus contrast in the present trial, b, and b, weigh
the successes and failures in the preceding trial, and b, indicates overall
bias. The visual term v(c¢) is negative for stimuli on the left and positive for
stimuli on the right; it is an odd-symmetric function of visual contrast,
v(—¢) = —v(c). Successes s and failures f are sequences of —1 (for left
port) and 1 (for right port). They are complementary in that if one is
nonzero the other must be zero. However, they can both be zero if the
trial was aborted. The bias term b, is negative for leftward biases and
positive for rightward biases.

Model fitting and simulations. Model fits and simulations were per-
formed on a session-by-session basis. We fitted the model using the
Matlab function glmfit applied to a matrix defined as follows. The first
row was a constant (to estimate b, ). The second row was the sequence s(t)
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shifted by one trial (to estimate b,). The third row was the sequence f(¢)
shifted by one trial (to estimate b;). The remaining rows (one for each
absolute contrast ¢y, ..., ¢, used) constituted an indicator matrix with
¢;; = lifc(t) = ¢; (the contrast ¢; was shown on the right), ¢;, = — 1 if
c(t) = —¢; (the contrast ¢; was shown on the left), and zero otherwise.
These latter rows allowed us to estimate the values of the visual
weights v(c;) for each of the possible absolute contrasts c;. Extending
the model to trials further in the past did not significantly improve the
goodness of fit as assessed by the model deviance. Trial-by-trial sim-
ulations of behavior were performed by drawing randomly from a
binomial distribution with p given by Equation 3, using at each time
interval the true history of successes and failures experienced by the
animal in the preceding trial.

Choice tendency. To evaluate the dependency of behavior on recent
history, we measured the tendency to make a choice (left or right) given
the previous choice (left or right) and the resulting outcome (success or
failure). For instance, to measure the tendency to choose right following
a successful left choice, we took all trials in which the previous choice was
left and was a success, and counted in how many of them the animal went
right, N, ice and in how many of them the stimulus was indeed on the
right, Nimuius- We defined tendency as (N ;ce/ Ny ) — 1,and com-
puted it for the actual choices by the animal, for the choices predicted by
the full model, and for the choices predicted by a vision-and-bias-only
model in which the strategy terms b, and by were set to zero. To evaluate
the predictions of these models, we correlated the predicted tendencies
with the observed ones to obtain a model quality index ranging from —1
(perfectly wrong predictions) through 0 (random predictions) to +1
(perfect predictions).

Electrophysiology in awake mice. Seven adult wild-type mice (C57BL/
6], 20—35 g) were implanted with a custom-designed headpost and re-
cording chamber over the left visual cortex using dental acrylic
(Superbond C&B; Prestige Dental) under isoflurane anesthesia (5% in-
duction, 1.5-2% maintenance). A ~1 mm? craniotomy was performed
centered at coordinates 3 mm lateral from the midline and 0.5 mm
anterior from lambda. The chamber was sealed with Kwik-Cast (WPI).
The animal was administered an analgesic (Rimadyl, 0.01 ml/gs.c.) dur-
ing surgery and for 3 d after surgery (Rimadyl, oral route). Following
recovery (1 week), the animals were handled and acclimatized to the
recording room. Mice were head-fixed and placed on an air-suspended
Styrofoam ball (Holscher et al., 2005; Dombeck et al., 2007). Extracellu-
lar neural activity was recorded by advancing a 16-channel electrode into
visual cortex (model A1X16-3mm-50-413; NeuroNexus Tech) by ~900
pm. The tissue was allowed to settle for 20 min before the start of each
2-3 h recording session. After each session, the recording chamber was
resealed and the animal returned to the home cage until the subse-
quent recording session (mean 3, maximum 6 sessions per animal).
Visual stimuli were presented using custom-written software across
three calibrated LCD monitors (HA191, Hanns.G, mean luminance
50 cd/m?), covering an angle of 140° horizontal and 36° vertical. We
recorded spike responses (multiunit activity) to contrast-reversing
sinusoidal gratings with a spatial frequency of 0.05 cycles/deg and a
temporal frequency of 2 Hz, presented for 1 s over the receptive field.
We used eight contrast levels (0, 10, 25, 40, 55, 70, 85, and 100%), each
shown 40 times in random order.

Contrast responses. To compare the contrast responses inferred from
behavior v(c) to the contrast responses obtained by extracellular record-
ings of neuronal activity r(c), we fitted a hyperbolic ratio function of
contrast (Albrecht and Hamilton, 1982):

timulus

n

fle) = Ry + Ry (5)

[ e

Here, the parameters R, .., ¢5,, and n determine the overall responsive-
ness, the semisaturation contrast, and the exponent of an accelerating
nonlinearity related to spike threshold, respectively. The parameter R,
allows for a positive baseline.

Calculating neurometric performance. We obtained the population ac-
tivity rin response to the kth presentation of a stimulus with contrast cby
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summing the average firing rates measured at different sites i across the
multielectrode array and across experiments:

r(c,k) = Er,-(c,k). (6)

Following the approach of Britten et al. (1992), we considered each site to
appear twice, once in viewing the side with the stimulus (¢ > 0) and once
in viewing the side without the stimulus (¢ = 0). Based on this assump-
tion, we calculated the pair of response distributions, r(c, .) and r(0, .), for
each stimulus condition. The fraction of correct choices for the ideal
observer is calculated as the area under the receiver operating character-
istic (ROC) curve for this pair of distributions (Green and Swets, 1966;
Tolhurst etal., 1983; Britten et al., 1992). By summing activity across sites
and experiments (Eq. 6), we are ignoring correlations across neurons.
This might not be a major limitation when modeling contrast sensitivity
due to the broad similarity of contrast response curves across neurons
(Montani et al., 2007).

Results

We present our results in four sections. First, we describe the
visual detection task and detail how we trained mice to perform
it. Second, we analyze the resulting psychometric curves using
classical methods and estimate contrast sensitivity. Third, we de-
scribe multiple occasions in which the mice were influenced by
nonvisual factors, and present a probabilistic choice model that
accounts for these factors. Fourth, we compare the visual perfor-
mance of the animal to that of neurons in V1 of awake, passively
viewing mice.

Behavioral training

We trained mice to perform a two-alternative forced-choice
(2AFC) contrast-detection task using operant conditioning (Fig.
1A,B). We adapted to mouse vision a three-port nose-poking
protocol used previously in rats to probe olfaction (Uchida and
Mainen, 2003), hearing (Yang et al., 2008), and vision (Meier et
al., 2011). The mouse puts its snout in a central port to trigger the
presentation of a visual stimulus on the left or right side. The
mouse then indicates the stimulus position by poking its snout
into the corresponding choice port. Correct trials are rewarded
by water. Stimuli were drifting sinusoidal gratings whose contrast
was 100% during training, and randomly chosen from a set of
contrasts afterward.

The training consisted of three stages and typically lasted ~4
weeks. First, the mice learned to obtain fluid from the ports, and
formed a positive association with the reward sound. Second, the
mice were exposed to the different trial outcomes (reward vs
timeout), formed negative associations with the timeout sound,
and learned that it is essential to change ports to collect rewards.
Finally, the mice learned to initiate a trial in the central port, to
associate visual stimuli with reward, and to indicate choice by
poking the appropriate port. Training ended when the animal’s
performance rose from 50% (chance value) to 80-90% (Fig. 1C).
We found it advantageous to work with heavier mice (and hence
with males) because they performed markedly more trials per
session (Fig. 1 D). Small animals are likely to reach fluid satiation
quicker than large animals.

In pilot studies, we identified several aspects of these methods
that are necessary for the animals to learn the task. A pilot study
determined that the box dividers (Fig. 1A, B) were essential, as
they increased the costs of mistakes and therefore discouraged a
guessing strategy that ignored visual stimuli. Two additional pilot
studies determined that it was essential to give reward in the
central port for initiation of a trial and to maintain the stimulus
present (albeit stationary) after the mouse exited that port.
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A key pilot study established the necessity for a regime of
complete water control, in which mice received water only by
performing the task in the choice box. A group of five naive mice
were trained in a less stringent regime: they received ad libitum
water every day for 1 h at the end of each training day. After 20 d
of phase three training, these animals had still not learned the task
(performance <<55% correct). They did learn the task, however,
once they were subjected to the regime of complete water control.

Analysis of psychometric curves

To estimate contrast sensitivity, we analyzed psychometric curves
relating stimulus contrast to the proportion of times the animal
chose a port (Fig. 2). To plot contrast on a single axis, we giveita
sign: positive for stimuli on the right (R) and negative for stimuli
on the left (L). To illustrate the span of our results, we select nine
example sessions in five animals (Fig. 2). As expected, the pro-
portion of R choices systematically increases as a function of
signed contrast. We fitted these data with a standard psychomet-
ric function (Eq. 1), which is determined by three parameters:
lapse rate, bias, and contrast threshold.

The lapse rate is the proportion of times the animal made a mis-
take even though the stimulus was clearly visible. It determines the
degree to which the asymptotes of the curve differ from 0% and
100%. Lapse rate was high in all of our data: it was 14%, 11%, and
10% in the first three example sessions (Fig. 2A—C), and it was sim-
ilarly high across sessions in all animals (8.5 * 1.6%, SD; N = 12).
These values are significantly larger than zero (p < 0.001).

The bias reflects a preference of the animal for one or the other
choice. It describes the degree to which the curve is displaced
along the contrast axis: if bias is absent, the curve crosses the
ordinate of 50% at zero contrast. Bias was small in the first three
example curves (1.3%, —4.3%, and 0.4%) (Fig. 2A—C), but in
other cases it could be substantially higher. For instance, a given
mouse could show a strong positive bias of 34.5% on day 1 (Fig.
2D), a strong negative bias of —57.7% 36 d later (Fig. 2E), and a
negligible bias of 1.3% 48 d later (Fig. 2 F). These large biases for
one side or the other tended to vary slowly over sessions and were
not random because they were often consistent across animals
(Fig. 3). They were probably due to common factors such as
minor imbalances (on the order of 1 ul) in the size of reward.
Indeed, bias was substantially reduced once we adopted a policy
of more accurate valve calibration.

The contrast threshold yields an assessment of contrast sensitiv-
ity. It is inversely related to the slope of the psychometric curve:
steeper curves correspond to lower thresholds, i.e., higher sensitivity.
We define contrast threshold as the increment in R contrast needed
to go from 50% R choices to 68% of the upper bound in R choices
(where the upper bound is 100% minus the lapse rate). In the first
three example datasets, contrast thresholds were rather similar at
10%, 10%, and 11% (Fig. 2A—C), and could be estimated with high
confidence (95% confidence intervals were 5-19%, 5-16%, and
5-18%). These values were typical of sessions with particularly reli-
able estimates of the psychometric curve. These sessions tended to
occur commonly toward the end of the week, presumably due to
increased levels of motivation (the animals received ad libitum access
to water during the weekend). The estimates of contrast threshold
varied from session to session, with the most reliable estimates cor-
responding to lower thresholds. Consider, for example, three ses-
sions from the same mouse (Fig. 2G-I). The first yielded a low
threshold (13%) and a rather tight confidence interval (7-23%). The
second yielded a higher threshold (20%) and an extremely wide confi-
dence interval (5-80%). The third yielded an even higher threshold
(41%) and a similarly wide confidence interval (8—70%). These noisy
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sessions are simply not usable to estimate con-
trast threshold using classical psychophysics.
We confirmed that noisier data tended
to yield higher estimates of threshold by
rank-ordering the sessions based on esti-
mated threshold (Fig. 4A); clearly, sessions
with high contrast thresholds tended to be
associated with large confidence intervals.
The noisier sessions were often the ones
showing large biases, whether positive or
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negative (Fig. 4B), regardless of number of
trials (Fig. 4C). These biases undermined
our ability to obtain high-confidence esti-
mates of threshold.

Taking into account the confidence in
each session’s estimate of threshold, we
obtained an overall estimate of threshold
for each animal (Fig. 4D). For each ani-
mal, we computed the likelihood of each
contrast being the true contrast threshold,
and defined the contrast threshold as the
contrast where this likelihood peaks. For
example, the entirety of the session-by-
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session measurements for an individual
mouse (Fig. 4A) is most consistent with a
single contrast threshold of 19.0% (Fig.
4 D). This value was typical of our sample;
the threshold averaged across all animals
was 21.3% (£3.9, SD; N = 12). This esti-
mate represents a consensus value that
summarizes the responses obtained in all
sessions and all animals. Such values are
high compared to those of primates and
humans, whose contrast threshold is in
the order of ~0.1-0.3% (De Valois et al.,
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50 100 1974; Kiorpes and Kiper, 1996).
Probabilistic choice model

As shown by the analysis above, our mea-
surements can be analyzed using classical
psychophysics to yield estimates of con-
trast threshold in mouse. Sessions with lit-
tle bias and lapse rate yield psychometric
curves of high quality (Fig. 2), allowing a
precise measure of the contrast that gives a
specified level of performance. This clas-
sical approach is satisfactory for most pur-
poses, but it suffers from at least two shortcomings.

First, the classical approach does not estimate how the in-
ferred neural responses depend on contrast. The contrast re-
sponses of neurons in various stages of the visual system are
nonlinear (Sclar et al., 1990), so one cannot extrapolate their
shape from a single measurement of slope made at threshold. We
would like the psychophysical measurements to estimate the neu-
ral response elicited by each contrast.

Second, the many sessions with high lapse rate or strong bias
constitute a challenge for classical psychophysics. The classical
approach does not explain the common tendency of the mice to
guess even when confronted with a patently visible stimulus.
For example, a lapse rate of 25% means that even when pre-
sented with a clearly visible, high-contrast visual stimulus, the
mouse acted randomly in half of the trials (Fig. 2H). Why
would an observer make these apparently random choices?



11356 + J. Neurosci., August 3, 2011 - 31(31):11351-11361

Busse et al. ® Contrast Detection in Mice

To address these questions, we devel- Mouse 0409
oped a probabilistic model‘of choice that A B o C  cee
takes into account both an internal neural o N ) e © ; e ©
response to contrast and systematic influ- ’ o -ﬁ ° Ooof o
ences of nonvisual factors on the choices of s o o ©°
: S H % > o8 °

the animal. To obtain this model, we ad- i) ° L RS
opted a framework that had been developed | = ,."..' °, '%) %e®
to study value-based decision making (Cor- = S ) % ° ‘08 o
rado et al., 2005; Lau and Glimcher, 2005) == ° 3 e ° o °..0&:.

5 8 o 00°

and endowed this framework with a sensory
term (Seidemann, 1998; Gold et al., 2008).
The result is a powerful model that accounts
for both sensory and nonsensory determi-
nants of choice.

In the probabilistic model, the ob-
server makes a decision by flipping a coin
whose fairness depends on the sum of a
sensory term, two strategy terms, and an
overall bias (Fig. 5). The sensory term v(c)
is applied to the contrast ¢ of the stimulus
in the present trial. The fitted values of
v(c;) are the estimated neural response to
each contrast ¢; in the session. The strategy
terms weigh the outcome—success or
failure—of the previous trial. Their weights b, and b; can be
positive (indicating a tendency to return to the previous choice)
or negative (indicating the opposite tendency). For instance, if b,
is positive and by is negative, then the overall strategy is to repeat
the previous choice if it was a success and to change port if it was
a failure. A bias term b, determines an overall preference for left
or right due, for example, to different estimates of average re-
ward. The sum of all these terms is the decision variable z, which
is positive if the animal is inclined to choose right and negative if
it is inclined to choose left. The decision variable z determines
through a logistic function the probability p of choosing the right
port in the coin flip (in other words, z equals the log odds of the
coin flip).

We fitted the probabilistic model to the data of each session,
obtaining weights for both visual and strategy terms. Fits were
obtained through logistic regression. As we show next, the model
was able to predict behavior, capturing the magnitude of both
sensory and nonsensory influences on choice. To quantify the
performance of the model and to compare it to a simpler model
with only the sensory term and bias, we measured its deviance.
We found that the full model performed significantly better
than the simpler model in 64% of all sessions (643 of 998
sessions, p < 0.05). Even when we concentrated on the 20% of
sessions with the lowest thresholds for each animal, where the
influences of nonsensory terms are presumably weakest, the
full model still had more predictive power in 55% of the ses-
sions (113 of 204 sessions, p < 0.05).

For some sessions the visual weights and the bias term were
all that was needed (Fig. 6 A—C). For instance, in our first
example session, the visual weights were fairly large (a value of
2 for z yields p = 0.88, i.e., it enforces a choice in 88% of the
cases) and the strategy weights were negligible (Fig. 6A). The
resulting psychometric responses were strongly driven by con-
trast, both for the actual measurements (Fig. 6 B, dots) and for
the responses predicted by the model (Fig. 6 B, gray area). The
tendency of the animal to choose L or R (Fig. 6C, left) differed
due to a bias for left choices, but it depended little on whether
the preceding choice was on L or R or whether it was a success
or a failure. The full model captured this tendency (Fig. 6C,
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The distribution of contrast thresholds estimated across days in a single mouse is consistent with a single estimate of
~20%. A, Contrast thresholds for individual sessions, sorted in increasing order. Symbols indicate estimated threshold and lines
indicate 95% confidence intervals obtained by bootstrapping. Open symbols indicate sessions in which bias exceeded +30%
contrast. Letters G-l indicate sessions used as examples in Figure 2, G/, respectively. B, Corresponding biases. €, Number of trials.
D, Likelihood of the distribution of contrast thresholds. The maximum corresponds to the single estimate that is consistent with all
the observations and is located at 19% contrast (arrow).

middle), but so did a simpler model involving only the visual
terms and the bias term (Fig. 6C, right). In accordance with
these observations, there is no difference in deviance between
the two models (p = 0.99).

In other sessions, however, the strategy terms played a funda-
mental role (Fig. 6 D-H). For instance, in our second example
session, the sensory weights were smaller and both strategy
weights were negative (Fig. 6 D). The strategy weights approached
the magnitude of visual weight for stimuli of substantial contrast,
indicating strong influence of nonvisual factors. Indeed, the cor-
responding psychometric data (Fig. 6 E) were less related to stim-
ulus contrast, with a higher lapse rate and higher threshold than
in the previous example. The effects of history (i.e., a tendency to
switch after a success) were captured by the full model but not by
the model without strategy terms (p < 0.001) (Fig. 6 F). In our
third example session (Fig. 6G-I), contrast sensitivity was rather
high (the contrast threshold was 19%) and visual weights were
substantial, yet the strategy terms were also required to predict
accurately the dependence of behavior on history. As confirmed
by the difference in deviance, the full model makes significantly
better predictions than the model with only sensory terms and
bias (p < 0.001).

The strategy terms were important to explain the data in a
majority of sessions (Fig. 7). We computed a model quality index
that measures the similarity in the history-dependence of behav-
ior predicted by the model and exhibited by the observer (Fig.
6C). Model quality index was much higher for the full model
(0.90 = 0.16, SD) (Fig. 7A) than for the simpler model that ig-
nored the history terms (0.59 = 0.34, p < 0.001) (Fig. 7B). Fi-
nally, in many sessions, both strategy weights were negative (Fig.
7C), indicating that the strategy was often more directly related to
choice than to reward or failure: the animals tended to alternate
between ports regardless of outcome (58.3 = 15.0%, SD, of ses-
sions; N = 12 mice). Thus, the distribution of signs for the two
strategy weights is biased toward negative (x? p < 0.001).

The probabilistic choice model gave estimates of perceptual
sensitivity that were on a par or superior to those obtained di-
rectly from the psychometric curves (Fig. 8). First, the two ap-
proaches yielded highly consistent estimates of overall bias (Fig.
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session 090813). They determine the sensory term v(c), the bias b, and the strategy weights b, and b for success and failure. The solid line
is the fit of a hyperbolic ratio function. B, The model predicts the corresponding psychometric data. Shaded area indicates the 95%
confidence interval of responses simulated by the fitted model. €, The model predicts the history-dependence of behavior. Gray level
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8A): there was a tight linear relationship between the parameter
w of the psychometric function and the term b, of the choice
model. Second, the estimates of contrast threshold made by the
choice model were less variable than those of the psychometric

posed of visual weights whose dependence
of contrast constitutes an inferred response
of visual neurons. How does this inferred
response compare with the response of V1
neurons?

To obtain contrast response functions,
we recorded multiunit activity elicited by
stimuli of different contrast in V1 of
awake mice (Fig. 9A—C). The contrast re-
sponses were well fitted by a hyperbolic
ratio function (Albrecht and Hamilton,
1982) with a mean explained variance of 77% (N = 85), allowing
us to summarize the responses using the fitted curves. As ex-
pected, neural responses to the different levels of contrast in-
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creased and eventually saturated. For example, a typical
recording gave a semisaturation contrast, cso, of 42% and an ex-
ponent, 1, of 1.8 (Fig. 9A). This behavior was representative of the
population of recordings (Fig. 9B) where the median semisatu-
ration contrast was 34% and exponent was 2.3. These measures,
however, varied widely across sites (Fig. 9C). For example, the
10% most sensitive and the 10% least sensitive contrast responses
exhibited a 5, <11% and >50% (Fig. 9C, gray triangles). Simi-
larly, the recording sites also varied broadly in the slope of the
contrast response functions, captured by the exponent n of the
hyperbolic ratio function.

These neural responses resemble the estimated internal re-
sponses inferred by the choice model that describes the behav-
ioral data (Fig. 9D). The distributions of semisaturation contrasts
for the internal representation of contrast inferred by the model
had a median c5, of 39%, while the 10% most and least sensitive
functions exhibited a ¢5, of 14% and 61%.

Finally, to obtain a more direct compar-
ison between V1 responses and behavioral A
performance, we returned to the psycho-
metric data, concentrating on the very
best sessions, which provided the lowest
thresholds for contrast detection. We
asked whether the choices made by the an-
imals in those sessions could be mediated
by activity in V1. If so, we would expect to
be able to decode V1 activity and obtain
performance that is equal or better than
that of the animal. In fact, considering
that the animals often used suboptimal
strategies based on prior choices, we
might find that the performance pre-
dicted by V1 activity is substantially supe-
rior to the performance of the animal.

To decode V1 activity, we applied a
simple model to the neural responses (Fig.
10). Following the approach of Britten et
al. (1992), we computed the response of a
population of neurons to multiple presentations of a given stim-
ulus contrast (¢ > 0) and asked how well an ideal observer could
distinguish this response distribution from the distribution of
responses to the gray screen (¢ = 0). Separately for each contrast,
we calculated neurometric performance from the area under the
ROC curve of these distributions (Green and Swets, 1966;
Tolhurst et al., 1983; Britten et al., 1992). In the model, we
varied the size of the population contributing to the response
distributions between 10 and 85 recording sites. We found
that with increasing population size, neurometric perfor-
mance was increasingly steeper and had its asymptote at pro-
gressively wider values (Fig. 10A).

Only the smallest population yielded thresholds similar to the
best thresholds of the animals in the behavioral study (Fig. 10 B).
To quantify the effects of population size on predicted contrast
threshold, we fitted the neurometric performance data with the
same psychometric function that we used to fit the psychophys-
ical data (Eq. 1). We found that contrast thresholds of the ideal
observer reading out populations of 10 and 15 sites were
10.2% and 9.0%, respectively, which is broadly consistent with
the best thresholds of ~10% obtained in our animals. Apply-
ing the decoder to larger populations resulted in progressively
lower thresholds. Furthermore, the decoder predicts small
lapse rates of ~4% even for the smallest sample size, while the
animals had an average lapse rate of 8.5%.

Figure8.
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0.001). B, Comparison of contrast threshold. The contrast threshold as given by the choice model is plotted for all sessions as a
function of parameter o of the psychometric function. The solid line is given by robust regression (offset = 14.36, p << 0.001;
slope = 0.34, p << 0.001). G, For each animal, the median threshold across sessions as obtained by the choice model is plotted as
a function of the overall threshold given by the maximum likelihood analysis (offset = 6.0, p = 0.24; slope = 0.78, p << 0.01).

While the behavioral responses are broadly consistent with
neural responses in visual cortex, this analysis suggests that mice
do not use signals in area V1 optimally. This analysis, however,
can only constitute a coarse comparison between neural and be-
havioral signatures of contrast sensitivity, because the neural ac-
tivity was not been acquired during the same trials as the
behavioral data. A more detailed and informative comparison
will have to be performed by recording from neuronal popula-
tions as the same time as the animal is performing a task.

Discussion

Using a two-alternative forced choice (2AFC) method in freely
moving mice, we measured psychometric functions for contrast
detection and showed that mice can be trained to perform several
hundred trials per session, allowing the estimate of high-quality
psychometric functions. We also found substantial nonsensory
influences on mouse behavior and proposed a simple generalized
linear model to capture these influences. Finally, we measured
contrast response functions in mouse V1 and used an ideal ob-
server analysis to predict neurometric curves for contrast. A com-
parison of predicted and measured behavior revealed that the
model generally outperforms the animals, suggesting that the
mice do not optimally use the information about stimulus con-
trast contained in the population response. Together, this work
brings to the mouse, the key species in biomedical research, tech-
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Contrast response functions in visual cortex of awake mice and comparison with inferred internal representation of contrast as revealed by the probabilistic model. A, Representative

example of a contrast response function measured at a single recording site. The solid line is a fit by the hyperbolic ratio function. Triangle indicates semisaturation contrast. B, Contrast responses
of all sites in the sample (N = 85). Black line corresponds to the example in A. €, The relationship of semisaturation contrast and exponent across the population of recorded sites. Circle corresponds
to the example in A. Triangles indicate the semisaturation contrasts for the median responses across the neuronal population (black triangle, ¢;, = 34%) and for the 10% most sensitive and least
sensitive contrast responses (gray triangles, ¢s, <<11% and >>50%). D, The relationship of semisaturation contrast and exponent for the inferred internal representation of contrast by the

probabilistic model across all animals and sessions.
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Neurometric curves predicting the proportion of rightward choices as a function of stimulus
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available to the decoder (10 — 85 sites). Lines correspond to fitted psychometric functions (Eq.
1). B, Contrast threshold as a function of the size of the neuronal pool. For comparison, small
horizontal lines at the left side indicate examples for the best contrast thresholds for each
animal in the behavioral study. The arrow points at the mean of those measurements.

niques that have been hitherto used with enormous success to
probe visual perception in humans and nonhuman primates.

The three-port choice method that we have adapted to the
study of mouse vision has some disadvantages over the most
common tests probing mouse vision, the optomotor drum
(Prusky et al., 2004) and the Y-shaped water maze (Prusky et al.,
2000; Prusky and Douglas, 2004): it takes 3—4 weeks of training
compared with minutes or days for the other tasks, and it yields
estimates of varying quality across sessions. By comparison, the
existing methods are more robust, easier, and quicker.

However, the three-port choice method also has major advan-
tages over these existing methods. First, our task allows investi-
gating spatial vision and top-down influences on the processing
of visual information. This would not be possible with the opto-
motor drum, which requires large stimuli drifting sideways and
which probes responses of subcortical structures (Douglas et al.,
2005). Second, our task yields hundreds of trials per day and
could be readily combined with chronic microelectrode record-
ings (Kepecs et al., 2008; Yang et al., 2008) or photostimulation
(Huber et al., 2008). Little of this would be possible with the
swimming task.

Our methods, just like those based on swimming (Prusky et
al., 2000), probe visual perception in mice using a 2AFC design.
This design has multiple advantages over simpler Go-NoGo
tasks. In Go-NoGo tasks, animals can have large biases for indi-

cating presence or absence, which might change during the
course of the session due to changing levels of impulsivity and
motivation. By contrast, the 2AFC design forces the observer to
place its internal criterion at the neutral point, because in every
trial it has to indicate the presence of a stimulus in one location
and the absence in another. Furthermore, observers usually per-
form better in 2AFC than Go-NoGo tasks, as they can sample
simultaneously from the noise and the noise-plus-signal distri-
bution (Gescheider, 1997; Macmillan and Creelman, 2005).

In the future, the three-port choice method can be extended
and improved. The method could be easily extended to discrim-
ination and to more complex visual stimuli (Morton et al., 2006).
There is the intriguing possibility of obtaining these measure-
ments in a high-throughput version of the task performed by the
animals in the home cage (Meier et al., 2011). Reliability of per-
formance could potentially be enhanced by further increasing the
costs for incorrect responses, e.g., by delivering an air-puff after a
mistake (Andermann et al., 2010; O’Connor et al., 2010) or by
providing a reward that is more appetitive than plain water. In
combination, such measures might reduce the high lapse rates
that we encountered in our mice. To avoid biases for one or the
other choice port, calibration and maintenance of the solenoid
valves is crucial since, as we have shown, minor imbalances of
reward in the order of 1 ul can have a dramatic impact on behav-
ior. Finally, to facilitate neurophysiological measurements, a
head-fixed version of the task could be developed by training
mice to perform a similar task on a spherical treadmill in a virtual
reality environment (Holscher et al., 2005; Harvey et al., 2009).
This extension would achieve the same level of stimulus control
and ease of brain access as recently achieved in a visual Go-NoGo
design (Andermann et al., 2010).

Our estimates of contrast threshold of ~10% falls in the mid-
dle of a wide distribution of published thresholds for mice, which
range from <1% (van Alphen et al., 2009) to 24% (Schmucker
and Schaeffel, 2006). Studies relying on optomotor eye and head
reflexes typically yield lower thresholds than the swimming task
(Prusky and Douglas, 2004). Furthermore, different studies have
used different definitions of threshold. Some studies define con-
trast threshold as the minimum contrast at which a response can
be elicited (Prusky et al., 2000; Schmucker and Schaeffel, 2006;
van Alphen etal., 2009). Others define it as the contrast that yields
70% correct responses (Prusky and Douglas, 2004; Umino et al.,
2008). Yet, other studies extrapolate their measurements to zero
response to obtain a contrast threshold (Porciatti et al., 1999). In
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our own measurements, we found average thresholds of ~20%
across animals and sessions and best thresholds of ~10%. These
wide ranges of results show that care needs to be taken when
comparing contrast thresholds across studies.

Though our data could clearly be analyzed using classical psy-
chophysics, we found that numerous aspects of the responses
called for a novel modeling approach. Indeed, choice behavior in
the mouse depended partly on nonsensory factors such as past
history of failures and rewards. In the absence of a sensory stim-
ulus, it is well known that behavior can be influenced by implic-
itly learned reinforcement contingencies (Herrnstein, 1961) or
past choices (Corrado et al., 2005; Lau and Glimcher, 2005). We
extended this approach to the case of sensory uncertainty and
obtained a model that quantifies both the observer’s sensory re-
sponses and behavioral strategies.

Our model of nonsensory influences can be applied in psycho-
physical experiments to obtain estimates of internal variables
contributing to the behavioral response. This approach might be
particularly useful in experiments with children or patients who
cannot be extensively trained or might be more susceptible to
nonsensory decision factors. Beyond this potential application,
we have shown that the model yielded— compared with classical
psychophysics— better predictions in more than half of the data-
sets even when we concentrated on the best psychometric data for
each animal. Likewise, Seidemann (1998) found that a similar
model could summarize well the responses of highly trained
monkeys. Finally, our model could be used to refine the training
of observers by online fitting and instantaneous adjustments in
the task to counterbalance and minimize behavioral strategies.
Thus, our proposed approach is likely to be useful to a wide
community, including those who work with humans.

Finally, we compared behavioral performance of the animals
to the predictions of an ideal observer applied to the population
responses in area V1 of awake, passively viewing animals. We
found that predicted contrast thresholds based on neurometric
performance were similar to the best contrast thresholds of the
animals in the behavioral study, but only when considering small
neural pool sizes for the prediction; when increasing the neural
pool, predicted thresholds were much lower than those observed
behaviorally. Furthermore, the decoder failed to capture the
rather high lapse rates of the animals. This suggests that animals
did not optimally use for task performance the information con-
tained in the pooled activity of primary visual cortex and is con-
sistent with measurements made in behaving primates (Chen et
al., 2006, 2008). However, since neural activity used for decoding
has not been acquired during the same trials as the behavioral
data, this analysis can only constitute a coarse comparison be-
tween neural and behavioral signatures of contrast sensitivity.

Our comparison of neural responses and perceptual behavior
is only the first step to a much more rigorous examination: future
studies of mouse vision should pair electrophysiological record-
ings with visual behavior to investigate, on a trial-by-trial basis,
how neuronal responses relate to behavior. Because of the possi-
ble importance of neuronal correlations (Averbeck et al., 2006), it
would be beneficial to record large numbers of individual neu-
rons at the same time (Cohen and Maunsell, 2009). Training
head-fixed mice to perform visual tasks on a spherical treadmill
in a virtual reality environment (Holscher et al., 2005; Harvey et
al., 2009) would be an ideal method to test thoroughly the rela-
tionship between responses of cortical neurons and the detection
of visual contrast by behaving mice.

Busse et al. ® Contrast Detection in Mice

Notes

Supplemental material for this article is available at www.carandinilab.
net/mousebehavior. This video shows a mouse engaged in contrast de-
tection task in the laboratory. This material has not been peer reviewed.
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