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From simple habitual responses to complex sensorimotor skills, 
our behavioral repertoire exhibits a marked sensitivity to timing 
information. To internalize temporal contingencies and to put them 
to use in the control of conditioned and deliberative behavior, our 
nervous systems must be equipped with central mechanisms for 
processing time.

Among the elementary aspects of temporal processing, and one that 
has been the focus of many psychophysical studies of time perception, 
is the ability to measure the duration between events (that is, interval 
timing)1. A common feature associated with repeated estimation (or 
production) of a sample interval is that the s.d. of the estimated (or 
produced) intervals increases linearly with their mean, a property that 
is termed scalar variability2–4. Although previous work has shown 
how suitable forms of internal noise might lead to scalar variability5–8, 
we do not know whether and how the nervous system can make use 
of this lawful relationship to improve timing behavior.

Scalar variability implies that measurements of relatively longer 
intervals are less reliable and thus more uncertain. We asked whether 
subjects have knowledge about this uncertainty and how they might 
exploit it to improve estimation and production of time intervals. This 
question is particularly important when one has prior expectations of 
how long an event might last. For example, if one measures an interval 
to be ~1.5 s, but expects it to be closer to 1.2 s on the basis of past 
experience, then they may conclude that the true interval was prob-
ably somewhere between 1.2 and 1.5 s. More generally, knowledge 
about the distribution of time intervals one may encounter, which we 
refer to as temporal context, could help to reduce uncertainty. The 
extent to which temporal context should inform temporal judgments 
depends on how unreliable measurements of time are. Although a 
metronome need not rely on temporal context to stay on the beat, a 
piano player may well use the tempo of a musical piece to coordinate 
finger movements in time. Thus, to make use of the oft-present tem-
poral context, the brain must have knowledge about the reliability of 
its own measurements of time.

The question of how knowledge about temporal context may 
improve measurements of elapsed time can be posed rigorously in 
the framework of statistical inference. In this framework, to estimate 
a sample interval, the observer may take advantage of two sources of 
information: the likelihood function, which quantifies the statistics of 
sample intervals consistent with a measurement, and the prior prob-
ability distribution function of the sample intervals that the observer 
may encounter. One possibility is for the observer to ignore the prior 
distribution and to choose the most likely value directly from the 
likelihood function, a strategy known as the maximum-likelihood 
estimation (MLE)9. Alternatively, a Bayesian observer would com-
bine the likelihood function and the prior and use some statistic to 
map the resulting posterior probability distribution onto an estimate. 
Common mapping rules are the maximum a posteriori (MAP) and 
Bayes least-squares (BLS), which correspond to the mode and the 
mean of the posterior, respectively.

To understand how humans evaluate their measurements of 
elapsed time in the presence of a temporal context, we asked sub-
jects to estimate and subsequently reproduce time intervals in the 
subsecond-to-second range that were drawn from three different 
prior distributions. Subjects’ production times showed a clear 
dependence on both the sample intervals and the prior distribu-
tion from which they were drawn. We fitted subjects’ responses  
to various observer models, such as MLE, MAP and BLS, and  
found that a Bayesian observer associated with the BLS could 
account for the bias, variability and overall performance of  
every subject in all three prior conditions. This suggests that subjects 
have implicit knowledge of the reliability of their measurements  
of time and can use this information to adjust their timing behav-
ior to the temporal regularities of the environment. Furthermore,  
our observer model indicated that this sophisticated Bayesian 
behavior can be accounted for by a nonlinear transformation  
that simply and directly maps noisy measurement of time to  
optimal estimates.
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Temporal context calibrates interval timing
Mehrdad Jazayeri1,2 & Michael N Shadlen2

We use our sense of time to identify temporal relationships between events and to anticipate actions. The degree to which we 
can exploit temporal contingencies depends on the variability of our measurements of time. We asked humans to reproduce time 
intervals drawn from different underlying distributions. As expected, production times were more variable for longer intervals. 
However, production times exhibited a systematic regression toward the mean. Consequently, estimates for a sample interval 
differed depending on the distribution from which it was drawn. A performance-optimizing Bayesian model that takes the 
underlying distribution of samples into account provided an accurate description of subjects’ performance, variability and bias. 
This finding suggests that the CNS incorporates knowledge about temporal uncertainty to adapt internal timing mechanisms to 
the temporal statistics of the environment.
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RESULTS
The ready-set-go procedure
Subjects had to measure and immediately afterwards reproduce 
 different sample intervals. A sample interval, ts, was demarcated by 
two brief flashes, a ‘ready’ cue followed by a ‘set’ cue. The corres-
ponding production time, tp, was measured from the time of the 
set cue to when subjects proactively responded via a manual key 
press (Fig. 1a). In each session, sample intervals were drawn from a 
discrete uniform prior distribution. For each subject, three partially 
overlapping prior distributions (short, intermediate and long) were 
tested (Fig. 1b). Subjects received feedback for sufficiently accurate 
production times (Fig. 1c). The main data for each prior condition 
were collected after an initial learning stage (typically 500 trials) to 
ensure that subjects had time to adapt their responses to the range of 
sample intervals presented.

Subjects’ timing behavior exhibited three characteristic features 
(Fig. 2). First, production times monotonically increased with sample 

intervals. Second, for each prior condition, production times were 
systematically biased toward the mean of the prior, as evident from 
their tendency to deviate from sample intervals and gravitate toward 
the mean interval10–12. Consequently, mean production times asso-
ciated with a particular ts were differentially biased for the three prior 
conditions. Third, production time biases were more pronounced in 
the intermediate and even more so in the long prior conditions, indi-
cating that longer sample intervals were associated with progressively 
stronger prior-dependent biases. Similarly, in each prior condition, the 
magnitude of the bias was larger for the longest sample interval com-
pared with the shortest sample interval (Supplementary Fig. 1).

Scalar variability implies that the measurement of longer  sample 
intervals engender more uncertainty. According to Bayesian theory, 
for these more uncertain measurements, subjects should rely more 
on their prior expectation (Supplementary Fig. 2). This is consistent 
with the observed increases in prior-dependent biases associated with 
longer sample intervals and suggests that subjects might have adopted 
a Bayesian strategy to reproduce time intervals. We developed proba-
bilistic observer models to evaluate these observations quantitatively 
and to understand the computations from which they might arise.

The observer model
The observer model’s task was to reproduce the sample interval, ts. As 
a result of measurement noise, the measured interval, tm, may differ 
from ts. The observer must use tm to compute an estimate, te, for ts. To 
do so, the observer may use an estimator that relies on probabilistic 
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Figure 1 The ready-set-go time-reproduction 
task. (a) Sequence of events during a trial. 
Appearance of a central spot indicated the 
start of the trial. Subjects were instructed  
to fixate the central spot and maintain 
fixation throughout the trial. A white feedback 
spot was visible to the left of the fixation 
point. After a random delay (0.25–0.85 s), 
two briefly flashed cues, ‘Ready’ and ‘Set’, 
were presented in sequence. Subjects were 
instructed to estimate the sample interval 
demarcated by the time between the ready 
and set cues and to reproduce it immediately 
afterwards. The production times were 
measured from the time of the set cue to  
the time subjects responded via a key-
press. When production times were in an 
experimentally adjusted window around 
the target interval (Online Methods), the 
feedback spot turned green to provide 
positive feedback. (b) Distribution of sample 
intervals. In each session, sample intervals 
were drawn randomly from one of three 
partially overlapping discrete uniform prior 
distributions (that is, short, intermediate and 
long) shown by the black, dark red and light 
red bar charts. (c) Feedback schedule. The 
width of the window for which production times were positively reinforced (green area) scaled with the sample interval (Online Methods).  
No feedback was provided for early and late responses. The plot shows an example schedule for the intermediate prior condition.
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Figure 2 Time reproduction in different temporal contexts. Individual 
production times for every trial (small dots), and their averages for each 
sample interval (large circles connected with thick lines) are shown for three 
prior conditions for a typical subject. Average production times deviated 
from the line of equality (diagonal dashed line) toward the mean of the 
priors (horizontal dashed lines). Prior-dependent biases were strongest for 
the long prior condition. Color conventions are as described in Figure 1b.
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sources of information, such as the likelihood function and the prior 
distribution. However, the estimator itself is fully characterized by a 
deterministic function, f, that maps tm to te; that is, te = f(tm). Finally, 
additional noise during the production phase may cause the produc-
tion time, tp, to differ from te (Fig. 3a).

To formulate the model mathematically, we need to specify the rela-
tionship between ts, tm, te, and tp. The relationship between tm and ts 
can be quantified by the conditional probability distribution, p(tm|ts), 
the probability of different measurements for a specific sample inter-
val. This distribution also specifies the likelihood function, tm st( ), a 
statistical description of the different sample intervals associated with 
a fixed measurement. We modeled p(tm|ts) as a Gaussian distribution 
centered at ts and assumed that its s.d. grows linearly with its mean 
(Fig. 3a). This assumption was motivated by the scalar variability of 
timing. The distribution of measurement noise was thus fully char-
acterized by the ratio of the s.d. to the mean of p(tm|ts), which we will 
refer to as the Weber fraction associated with the measurement, wm. 
With the same arguments in mind, we assumed that the distribution 
of tp conditioned on te, p(tp|te), is also Gaussian, centered at te and 
associated with a constant Weber fraction, wp.

Finally, the relationship between tm and te was modeled by a deter-
ministic mapping function, f, which we will refer to as the estima-
tor. Different estimators are associated with different mapping rules. 
Among them, we focused on the MLE, MAP and BLS because of their 
well-known properties and because they were most germane to the 
development of our arguments with respect to the psychophysical 
data. We denote the corresponding estimators by fMLE, fMAP and fBLS, 
respectively (Fig. 3b–d).

The fMLE estimator assigns te to the peak of the likelihood function 
(Fig. 4a). In our model, with a Gaussian-distributed measurement 
noise and a constant Weber fraction, te would be proportional to 
tm (Online Methods). The fMAP and fBLS estimators, on the other 
hand, rely on the posterior distribution, which is proportional to 
the product of the prior distribution and the likelihood function. 
Because the prior distribution that we used was uniform, the pos-
terior was a scaled replica of the likelihood function in the domain 
of the prior and zero elsewhere. The MAP rule extracts the mode 
of the posterior, which would correspond to the peak of the likeli-
hood function, except when the peak falls below or above the prior 
distribution’s shortest or longest sample interval. Thus, fMAP is the 
same as fMLE, with the difference that its range is limited to the 
domain of the prior (Fig. 4b). For BLS, which is associated with 
the mean of the posterior, the estimator, fBLS, is a sigmoid function 
of tm (Fig. 4c). Note that as the specification of these estimators 
does not invoke any additional free parameters, the observer model 
associated with each estimator was fully characterized by just two 
free parameters, wm and wp.

Measurement ProductionEstimation
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Figure 3 The observer model for time reproduction. (a) The three-stage 
architecture of the model. In the first stage, the sample interval, ts, is 
measured. The relationship between the measured interval, tm, and ts is 
characterized by measurement noise, p(tm|ts), which was modeled as a 
Gaussian function centered on ts whose s.d. grows linearly with the mean 
(that is, scalar variability). The second stage is the estimator; that is, the 
deterministic function, f(tm), that maps tm to te. The third stage uses  
te to produce interval tp. The conditional dependence of tp on te, p(tp|te), 
was characterized by production noise, which was modeled by a  
zero-mean Gaussian distribution whose s.d. scales linearly with te.  
(b–d) The deterministic mapping functions associated with the MLE,  
MAP and BLS models, respectively.

Figure 4 MLE, MAP and BLS estimators. (a–c) Schematic representations 
of how MLE, MAP and BLS estimates are computed, respectively. Upward 
arrows in black and gray show two example sample intervals. Vertical 
dashed lines represent the noise-perturbed measurements associated with 
those sample intervals. Measured intervals differ from the corresponding 
samples as shown by the misalignment between the upward arrows and their 
corresponding vertical dashed lines. The likelihood functions associated 
with the two measurements are shown on the far right of each panel (rotated 
90 degrees). These likelihood functions are plotted with respect to the 
measurements, as shown by the reflection of the measured interval on the 
diagonal (horizontal dashed lines). The MLE estimator is shown in a. The 
peak of the likelihood function determines the estimate (filled circles, thick 
left arrow). The corresponding mapping function, fMLE, for all possible 
measurements is shown by the solid black line with the two example cases 
superimposed (Online Methods). The MAP estimator is shown in b. Right, 
the posterior distributions (truncated Gaussian functions) for the two 
measurements are computed by multiplying their associated likelihood 
functions by the prior (gray bar chart). MAP estimates are computed from the 
mode of the posterior (filled circles). The corresponding mapping function, 
fMAP, is the same as fMLE with the difference that its range is limited by the 
domain of the prior. The BLS estimator is shown in c. Data are presented as 
in b, except that for BLS, the mean of the posterior determines the estimate. 
The resulting mapping function, fBLS, is sigmoidal in shape.
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Comparing experimental data with the observer model
Our psychophysical data consisted of pairs of sample intervals and 
production times (ts and tp), but the observer model that we created 
to relate ts to tp relies on two intervening and unobservable (hidden) 
variables, tm and te. We thus expressed these two hidden variables in 
terms of their probabilistic relationship to the observable variables ts 
and tp (Online Methods) and derived a direct relationship between 
production times and sample intervals. This formulation was then 
used to examine which of the three observer models described human 
subjects’ responses best.

To compare human subjects’ responses to those predicted by the 
observer models, we quantified production times with two statistics, 
their variance (VAR) and bias (BIAS) (Fig. 5a), which together partition 
the overall root mean squared error (RMSE) by RMSE2=VAR+BIAS2. 
This relationship, which highlights the familiar trade-off between 
the VAR and BIAS, when written as the sum of squares, becomes the 
standard equation of a circle, RMSE VAR BIAS2 2 2 .

This geometric description indicates that in a plot of VAR  versus 
BIAS, a continuum of values along a quarter circle would lead to the 
same RMSE (Fig. 5b). It also provides a convenient graphical descrip-
tion for how a larger RMSE represented by a quarter circle with a 
larger radius may arise from increases in VAR , BIAS or both. We 
used this plot to summarize the statistics of production times and to 
evaluate the degree to which different observer models could capture 
those statistics.

We fitted the parameters of the MLE, MAP and BLS models  
(wm and wp) for each subject on the basis of the production times in 
the three prior conditions. We then simulated each subject’s behavior  
using the fitted observer models and compared each model’s  
predictions to the actual responses using the BIAS, VAR  and RMSE 
statistics (Fig. 5c–g).

The MLE model did not exhibit the prior-dependent biases 
present in production times (Fig. 5c,d), because it does not take 
the prior into account. This failure cannot be attributed to an unsuc-
cessful fitting procedure or a misrepresentation of the likelihood 
function. The fact that subjects’ production times depended on 
the prior condition would render any estimator that neglects the 
prior inadequate, the parametric form of the likelihood function 

 notwithstanding. The MAP model was slightly better than the MLE 
model at capturing the trade-off between BIAS and VAR (Fig. 5e,f), 
but it also underestimated the bias of the production times and 
overestimated their variance for all subjects. The BLS model on 
the other hand, mimicked the bias and variance of the production 
times quite well (Fig. 5g). It captured the overall RMSE, as well as 
the trade-off between the VAR and the BIAS (Fig. 5h), and was 
statistically superior to both MLE and MAP estimators across our 
subjects (Fig. 6).

We evaluated several variants of the BLS model by incorporating 
different assumptions concerning the measurement and production 
noise. In our main model (Fig. 4c), we fit Weber fractions for both 
sources of noise (wm and wp), consistent with the observation that, for 
all subjects, the s.d. of the production times was roughly proportional 
to the mean (Supplementary Fig. 3). We also considered the possibility 
that the s.d. of either the measurement noise or the production noise 
scales with the base interval, whereas the other noise source has con-
stant s.d. (Supplementary Tables 1 and 2). For all subjects, the original 
BLS model outperformed the model in which the measurement noise 
had a constant s.d. and, for five out of six subjects, it outperformed the 
alternative in which the production noise had a constant s.d. (Akaike 
Information Criterion; Supplementary Table 1). Moreover, a BLS 
model in which Weber fractions were assumed to be identical (wm = 
wp) was inferior to the original BLS model (log likelihood ratio test for 
nested models, P < 0.03 for one subject and P < 10−7 for others). The 
importance of the measurement and production Weber fractions in 
accounting for the bias and variability of production times was also 
evident in model simulations (Supplementary Fig. 4).

Figure 5 Time-reproduction behavior in humans and model observers. 
(a) For each sample interval (referred to by subscript i) in each prior 
condition, we computed two statistics: BIASi and VARi. BIASi is the 
average difference between the production times and the sample interval 
and VARi as the corresponding variance. As an example, the plots 
shows how the BIASi and VARi were computed for the largest sample 
interval associated with the long prior condition for one subject (data are 
presented as in Fig. 2). For this distribution of production times (histogram),  
BIASi is the difference between the solid horizontal red line and the 
horizontal dashed line and VARi is the corresponding variance. For each 
prior condition, we computed two summary statistics; BIAS is the root 
mean square of BIASi and VAR is the average of VARi across sample 
intervals. (b) VAR  versus BIAS for three prior conditions for the same 
subject as in a. On a plot of VAR  against BIAS, the locus of a constant 
RMSE value is a quarter circle. Dashed quarter circles show the loci 
of RMSE values associated with the VAR  and BIAS derived from the 
subject’s production times. (c) Simulated production times from the  
best-fitted MLE model to the data in a. (d) The scatter of VAR  and 
BIAS of the best-fitted MLE model for three prior conditions (small dots) 
computed from 100 simulations similar to the one shown in c. The VAR  
and BIAS of the subject are plotted for comparison (same as in b). (e–h) 
Data are presented as in c and d and show results for the best-fitted 
MAP (e,f) and BLS (g,h) models, respectively. Color conventions are as 
described in Figure 1b.
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Because our observer models were described by just two param-
eters (wm and wp) and all of the models used the same number of 
 parameters, we were reasonably confident that the success of the 
BLS rule was not a result of over-fitting. Nonetheless, we tested for 
this possibility by fitting the model to data from the short and long 
prior conditions. The fits captured the statistics of the intermediate 
prior condition equally well. Finally, we note that the fits for the BLS 
and MAP rules did not differ systematically (Fig. 6a–c). Therefore, 
the success of the BLS model cannot be attributed to the constraints 
inherent in our fitting procedure, but rather to its superior description 
of the estimator subjects adopted in this task.

DISCUSSION
Our central finding is that humans can exploit the uncertainty asso-
ciated with measurements of elapsed time to optimize their timed 
responses to the statistics of the intervals that they encounter. This 
conclusion is based on the success of a Bayesian observer model that 
accurately captured the statistics of subjects’ production times in a 
simple time-reproduction task.

A characteristic feature of subjects’ production times was that they 
were systematically biased toward the mean of the distribution of 
sample intervals. This observation is consistent with the ubiquitous 
central tendency of psychophysical responses in categorical judgment 
and motor production10–14. Previous work, such as the adaptation- 
level theory14 and range-frequency theory13, attributed these so-
called range effects to subjects’ tendency to evaluate a stimulus on 
the basis of its relation to the set of stimuli from which it is drawn. 
These theories, however, do not offer an explanation for what gives 
rise to such range effects in the first place and whether they are of 
any value. In contrast, our work suggests that it is subjects’ (implicit) 
knowledge of their temporal uncertainty that determines the strength 
of the range effect. Moreover, the Bayesian account of range effects 
suggest that production time biases help, rather than harm, subjects’ 
overall performance (Supplementary Figs. 2 and 5).

Bayesian interval timing
Bayesian models have had great success in describing a variety of 
phenomena in vision and sensorimotor control15–18 and interval 
timing19,20. Symptomatic to these models are prior-dependent biases 
whose magnitude increases for progressively less reliable measure-
ments21. Motivated by the observation of such biases in our subjects’ 
behavior and the success of a previous Bayesian model of coincidence 

form is determined precisely from the likeli-
hood function, the prior distribution and the 

cost (loss) function. The success of a Bayesian estimator therefore 
depends on how well the likelihood, the prior and the cost function 
are constrained.

In psychophysical settings, as sensory measurements are not directly 
accessible, the likelihood function must be inferred from behavior 
and suitable assumptions about the distribution of noise. For exam-
ple, cue-combination studies make the reasonable assumption that 
measurements are perturbed by additive zero-mean Gaussian noise 
and infer the width of the likelihood function from psychophysical 
thresholds25,26. Alternatively, it is possible to model the likelihood 
function on the basis of the uncertainty associated with external noise 
in the stimulus16,27,28. We modeled the likelihood on the basis of the 
assumption that the distribution of measurements associated with a 
sample interval was Gaussian, centered on the sample interval and 
had a s.d. that scaled with the mean (Online Methods).

To tease apart the roles of the likelihood function and the prior, 
it is important to be able to vary them independently. One common 
strategy for manipulating likelihoods is to control the factors that 
change psychophysical thresholds, such as varying the external noise 
in the stimulus16,27. We exploited the scalar variability of timing to 
manipulate likelihoods. This property, which arises from internal 
noise only and is known to hold across tasks and species2–4 for the 
range of times that we used10, allowed us to manipulate the likelihood 
function simply by changing the sample interval. To manipulate the 
prior independently, we collected data using three discrete uniform 
prior distributions. The priors were partially overlapping so that cer-
tain sample intervals were tested for two or three different priors, 
which enabled us to evaluate the effect of the prior independent of 
the likelihood function.

To convert the posterior distribution to an estimate, we needed to 
specify the cost function associated with the estimator. We considered 
two possibilities: a cost function that penalizes all erroneous estimates 
similarly, which corresponds to the mode of the posterior (MAP), and 
a cost function that penalizes errors by the square of their magnitude, 
which corresponds to the mean of the posterior (BLS). We also con-
sidered a maximum-likelihood estimator that ignores the prior and 
chooses the peak of the likelihood function for the estimate (MLE). To 
decide which of these estimators better described subjects’ behavior, it 
was essential to consider both the bias and the variability of production 
times. This technique, which was originally introduced to estimate inter-
nal priors from psychophysical data22, provided a powerful constraint in 
the specification of the estimator’s mapping function.
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Figure 6 Time reproduction behavior in humans and model observers: model comparison.  
(a) Average BIAS (squares) and VAR  (circles) computed from 100 simulations of the best-fitted 
MLE model as a function of BIAS and VAR  computed directly from psychophysical data for all 
six subjects and all three prior conditions. The inset shows the Weber fraction of the measurement 
and production noise (wp versus wm) of the best-fitted MLE model for the six subjects. (b,c) Data 
are presented as in a for the MAP and BLS models, respectively. Each subject contributed six data 
points to each panel; that is, three prior conditions (black, dark red and light red) by two metrics 
(BIAS and VAR ).

timing19, we set out to formulate a Bayesian 
model for time reproduction.

The model consisted of three stages. The first 
stage emulated a noisy measurement process 
that quantified the probabilistic relationship 
between the sample intervals and the corre-
sponding noise-perturbed measurements22. 
In the second stage, a Bayesian estimator 
computed an estimate of the sample interval 
from the measurement. Finally, a noisy produc-
tion stage converted estimates to production 
times23,24. Consistent with previous work on 
interval timing, the measurement and produc-
tion noise exhibited scalar variability2,3,5,7.

The estimator in the second stage of the 
model defines a deterministic mapping of 
measurements to estimates and its functional 
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We used our three-stage model to estimate the measurement and 
production Weber fractions, and to decide which of the three mapping 
rules (MLE, MAP or BLS) better captured production times29. The 
MLE estimator clearly failed to capture the pattern of prior-dependent 
biases evident in every subject’s production times, as expected from 
any estimator that neglects the prior. By incorporating the prior, both 
the MAP and BLS estimators exhibited contextual biases, but the BLS 
consistently outperformed the MAP model in explaining the trade-
off between the trial-to-trial variability and bias across our subjects 
(Fig. 6b,c). It is important to emphasize that, had we ignored the 
trial-to-trial variability, both BLS and MAP, as well as a variety of 
other Bayesian models, could have accounted for the prior-dependent 
biases in our data.

We also considered variants of the BLS model in which either the 
measurement or production noise were modeled as Gaussian with 
a fixed s.d. (not scalar). Overall, our original model outperformed 
these alternatives (Supplementary Table 1), as the measurement and  
production Weber fractions had different effects on the bias and 
variance of production times (Supplementary Fig. 4). The degrad-
ing effect of formulating noise with a fixed s.d. was more severe 
for the measurement stage than it was for the production stage 
(Supplementary Table 1).

Despite the success of our modeling exercise, further validation 
is required to substantiate the role of a BLS mapping in interval 
timing. Four considerations deserve scrutiny. First, formulation of 
the likelihood function might take into account factors other than 
scalar variability that could alter measurement noise. For example, 
task difficulty or reinforcement schedule (Supplementary Fig. 6) 
could motivate subjects to pay more attention to certain intervals 
and to measure them more reliably, which could in turn strengthen 
the role of the likelihood function relative to the prior. Therefore, 
it is important to consider attention and other related cognitive 
factors as an integral part of how the nervous system could bal-
ance the relative effects of the likelihood function and the prior. 
Second, knowledge of the prior is itself subject to uncertainty and 
the internalized prior distribution may differ from the one imposed 
experimentally. Third, the feedback subjects receive probably inter-
acts with the mapping rule that they adopt. Our feedback schedule 
did not encourage the use of a BLS rule, but we cannot rule out the 
possibility that it influenced subjects’ behavior. Fourth, although 
the operation of a Bayesian estimator is formulated deterministi-
cally, its neural implementation is probably subject to biological 
noise. These different sources of variability must be parsed out 
before the estimator can be characterized definitively. These con-
siderations, which concern all Bayesian models of psychophysical 
data, highlight the gap between normative descriptions and their 
biological implementation.

We referred to our model as a Bayesian observer and not a Bayesian 
observer-actor because our formulation was only concerned with mak-
ing optimal estimates. However, as the full task of the observer was 
to reproduce those estimated intervals, we can formulate a Bayesian 
observer-actor whose objective is to directly optimize production times 
and not the intervening estimates. This model has to incorporate the 
measurement uncertainty, the production uncertainty and the prior 
probability distribution to compute the probability of every possible 
pair of sample and production interval. It would then use this joint 
posterior to minimize the cost of producing erroneous intervals. The 
derivations associated with the Bayesian observer-actor model are more 
involved and beyond the scope of our work. However, we note that 
under suitable assumptions, the two models would behave similarly 
(Online Methods).

Context-dependent central timing
Our findings suggest that the brain takes into account knowledge 
of temporal uncertainty and adapts its time keeping mechanisms 
to temporal statistics in the environment. What neural compu-
tations may lead to such sophisticated behavior? One possibility 
is that the brain implements a formal Bayesian algorithm. For 
example, populations of neurons might maintain an internal rep-
resentation of the prior distribution and the likelihood function, 
multiply them to represent a posterior and produce an estimate by 
approximating its expectation. Related variants of this scheme are 
also conceivable. For instance, our results could be accommodated 
by an MLE strategy if the prior would exert its effect indirectly 
by changing the statistics of noise associated with measurements. 
Another, more attractive possibility that obviates the need for 
explicit representations of the likelihood function and the prior is 
for the brain to learn the sensorimotor transformation that would 
map measurements onto their corresponding Bayesian estimates 
directly30. This is what our observer model exemplifies; it estab-
lishes a deterministic nonlinear mapping function to directly 
transform measurements to estimates. Evidently, this form of 
learning must incorporate knowledge about scalar variability and  
prior distribution.

Electrophysiological recordings from sensorimotor structures 
in monkeys have described computations akin to those that our 
observer model utilizes. For instance, parietal association regions and 
 subcortical neurons in caudate have been shown to reflect flexible 
sensorimotor associations31,32. The time course of activity across 
 sensorimotor neurons is believed to represent sensory evidence33, its 
integration with the prior information34, and the preparatory signals 
in anticipation of instructed and self-generated action35–37. The 
importance of sensorimotor structures in time reproduction is further 
reinforced by their consistent activation in human neuroimaging 
studies that involve time sensitive computations38–41.

A variety of models have been proposed to explain the percep-
tion and use of an interval of time. Information theoretic models 
attribute the sense of time to the accumulation of tics from a central 
clock11,42,43; physiological studies have noted a general role for ris-
ing neural activity for tracking elapsed time in the brain36,37,44–48 
and biophysical models have been developed that suggest that 
time may be represented through the dynamics of neuronal net-
work49. Our work, which does not commit to a specific neural 
implementation, suggests that the internal sense of elapsed time 
in the subsecond-to-second range may arise from a plastic sensori-
motor process that enables us to operate efficiently in different 
temporal contexts.

METHODS
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Psychophysical procedures. Six human subjects aged 19–40 years participated in 
this study after giving informed consent. All had normal or corrected-to-normal 
vision and all were naive to the purpose of the experiment. Subjects viewed all 
stimuli binocularly from a distance of 52 cm on a 17-inch iiyama AS4311U LCD 
monitor at a resolution of 1,024 × 768 driven by an Intel Macintosh G5 computer 
at a refresh rate of 85 Hz in a dark, quiet room.

In a ready-set-go time-reproduction task, subjects measured certain sample 
intervals demarcated by a pair of flashed stimuli and reproduced those inter-
vals by producing time-sensitive manual responses. Each trial began with the 
presentation of a central fixation point for 1 s, followed by the presentation of 
a warning stimulus at a variable distance to the left of the fixation point. After 
a variable delay ranging from 0.25–0.85 s drawn randomly from a truncated 
exponential distribution, two 100-ms flashes separated by the sample interval, ts, 
were presented. The first flash, which signified the ready stimulus, was presented 
at the same distance as the warning stimulus but to the right of the fixation point. 
The set stimulus was presented ts ms afterwards and 5 degrees above the fixation 
point (Fig. 1a). Subjects were instructed to measure and reproduce the sample 
interval by pressing the space bar on the keyboard ts ms after the presentation of 
the set. Production times, tp, were measured from the center of the set flash (that 
is, 50 ms after its onset) to when the key was pressed. When tp was sufficiently 
close to ts, the warning stimulus changed from white to green to provide positive 
feedback and encourage stable performance.

All stimuli were circular in shape and were presented on a dark gray background. 
Except for the fixation point, which subtended 0.5 degrees of visual angle, all other 
stimuli were 1.5 degrees. To ensure that subjects could not use the layout of the 
stimuli to adopt a spatial strategy for the time-reproduction task (for example, track 
an imaginary moving target), we varied the distance of the ready and the warning 
stimulus from the fixation point on each trial (range of 7.5–12.5 degrees).

For each subject, three experimental conditions were tested separately. These 
conditions were the same in all respects except that, for each condition, the sample 
intervals were drawn from a different prior probability distribution. All priors 
were discrete uniform distributions with 11 values, ranging from 494–847 ms for 
the short, 671–1,023 ms for the intermediate and 847–1,200 ms for long prior 
condition. Note that to help tease apart the effects of prior condition from sample 
interval, the priors were chosen to be partially overlapping.

For each subject, the order in which the three prior conditions were tested 
was randomized. For each prior condition, subjects were tested after they com-
pleted an initial learning stage. Learning was considered to be complete when the 
variance and bias of the production times had stabilized (less than 10% change 
between sessions). The main data for each prior condition were collected in two 
sessions after learning for that condition was complete. Learning for each subse-
quent prior condition started after testing for the preceding prior condition was 
completed. For five of six subjects, the learning was completed by the end of the 
first session (less than 10% change between first and second sessions). For one 
subject, learning of the first prior condition was completed after four sessions. For 
this subject, the fifth and sixth sessions provided data for the first prior condition. 
For the other two prior conditions, similar to other subjects, responses stabilized 
after one practice session. All subjects typically participated in three sessions per 
week and each sessions lasted ~45 min (that is, nearly 500 trials).

Subjects received positive feedback for responses that fell in a specified window 
around ts (that is, correct trials). To compensate for the increased difficulty associ-
ated with longer sample intervals, a natural consequence of scalar timing variabil-
ity2–4, the width of this window was scaled with the sample interval with a constant 
of proportionality, k. To ensure that the performance was comparable across differ-
ent prior conditions, the value of k was controlled by an adaptive one-up, one-down 
procedure that added or subtracted 0.015 to or from k for each miss or correct trial. 
As such, every subject’s performance for every session yielded approximately 50% 
positively reinforced trials (mean = 51.7%, s.d. = 1.33%). For each prior condition, 
the maximum (minimum) number of correct trials corresponded to the intermedi-
ate (extreme) sample intervals (Supplementary Fig. 3).

The Bayesian estimator. The noise distribution associated with the measure-
ment stage of the model determines the distribution of tm for a given ts, p(tm|ts). 
From the perspective of the observer who makes a measurement tm, but does not 
know ts, this relationship becomes a function of ts that is known as the likelihood 
function, tm s m st p t t( ) ( ), in which tm is fixed. We modeled p(tm|ts) as a 

Gaussian distribution with mean ts and s.d. wmts, which scaled linearly with ts 
(scalar variability) with a constant coefficient of variation, wm. 

tm s m s
m s

ts tm
wmtst p t t

w t
e( ) ( )

( )
( )1

2 2

2

2 2

Similarly, the production noise distribution, p(tp|te), was assumed to be Gaussian 
with zero mean and a constant coefficient of variation, wp. 

p t t
w t

ep e
p e

t p te

wpte( )
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To simplify derivations, we modeled the discrete uniform prior distributions 
used in the experiment as continuous. For each prior condition, we specified the 
domain of sample intervals between ts

min and ts
max on the basis of the minimum 

and maximum values used in the experiment. 

( ) max min
min max

t t t
t t t

s s s
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The resulting posterior, (ts|tm), is the product of the prior multiplied by the 
likelihood function and appropriately normalized. 

t t
t p t t

t p t t dt

p t t

p t t dts m
s m s

s m s s

m s

m s sts

( )

( ) minn
max

min max
ts

s s st t tfor

otherwise0
 

The Bayesian estimator computes a single estimate, te, from the posterior by 
considering an objective cost function, l(te, ts), that quantifies the cost of errone-
ously estimating ts as te. The Bayesian estimate minimizes the posterior expected 
loss, which is the integral of the cost function for each ts, weighted by its posterior 
probability, (ts|tm). 

t f t l t t t t dte l m
te

e s s m s( ) argmin ( , )
 

Notice that the optimal estimate, te, is a deterministic function of the 
measured sample fl(tm) in which the subscript l reflects the particular 
cost/loss function.

For the MLE model, the estimator fMLE(tm) is associated with the sample 
interval that maximizes the likelihood function, which can be derived  
from equation (1).

f t t t
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The MLE estimate is proportional to measurement. For a plausible range of values 
for wm, the constant of proportionality would be less than 1, and thus the MLE 
estimator would systematically underestimate the sample. For example, for 0.1 < 
wm < 0.3, the constant of proportionality would vary between 0.99 and 0.92.

For the MAP rule, the cost function is −  (te − ts), where  (.) denotes the Dirac 
delta function. The corresponding estimator function, fMAP (tm), is specified by 
the mode of the posterior. 

f t t t

t t t

f t t tMAP m
ts

s m

s s s

ML m sargmax ( )

min min

min
for

for ss s

s s s

t

t t t

max

max maxfor

 

(1)(1)
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For the BLS rule, the cost function is the squared error, (te − ts)2, and the estimator 
function, fBLS(tm), corresponds to the mean of the posterior. 

f t
t p t t dt

p t t dt
BLS m

s m s sts

ts

m s sts

ts
( )

min
max

min
max

  

The Bayesian observer model. The Bayesian estimator specifies a deterministic 
mapping from a measurement, tm, to an estimate, te. However, our psychophysical 
data consists of pairs of sample interval, ts, and production time, tp. Accordingly, 
we augmented the estimator with a measurement stage and a production stage, 
which, together with the estimator, provides a complete characterization of the 
relationship between ts and tp. The model, however, relies on two intermedi-
ate variables, tm and te, that are psychophysically unobservable (that is, hidden 
variables). To remove these variables from the description of the model, we took 
advantage of a trick common to Bayesian inference, which is to integrate out the 
hidden variables (that is, marginalization). Specifically, using the chain rule, we 
decomposed the joint conditional distribution of variables tm, te and tp to three 
intervening conditional probabilities: 

p t t t t w w
p t t t t w w p t t t w w p t

p e m s m p

p e m s m p e m s m p

( , , , , )
( , , , , ) ( , , , ) ( mm s m pt w w, , )

 

We used the serial architecture of our model (Fig. 3a) to simplify the dependen-
cies on the right hand side of equation (9). In the first term, because the condi-
tional probability of tp is fully specified by te and wp (from equation (2)), we can 
safely omit the other conditional variables (tm, ts and wm). In the second term, 
the only relevant conditional variable is tm, as it specifies te deterministically. And 
for the third term, wp has no bearing on tm. Incorporating these simplifications, 
the joint conditional distribution can be rewritten as 

p t t t t w w p t t w p t t p t t wp e m s m p p e p e m m s m( , , , , ) ( , ) ( ) ( , )  

Moreover, because te is a deterministic function of tm—that is, te = f(tm)—the  
conditional probability p(te|tm) can be written as a Dirac delta function. 

p t t t t w w p t t w t f t p t t wp e m s m p p e p e m m s m( , , , , ) ( , ) ( ) ( , )  

We can eliminate the dependence on the two hidden variables tm and te by  
marginalization. 
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The integrand is the product of the conditional probability distributions associ-
ated with the measurement and production stages. By substituting these dis-
tributions from equations (1) and (2), and f(tm) from equations (6), (7) or (8) 

(8)(8)

(9)(9)

(10)(10)

(11)(11)

(12)(12)

(depending on the estimator of interest), equation (12) provides the conditional 
probability of tp for a given ts as a function of the model parameters wm and wp.

The Bayesian observer-actor model. The observer model described above 
obtains an estimate that minimizes a cost built around the estimate and the actual 
time interval. It was formulated to minimize the expected loss associated with 
erroneous estimates, rather than production times. A more elaborate Bayesian 
observer-actor model would seek to minimize expected loss with respect to the 
ensuing production times (and not the intervening estimates). This elaboration 
demands two considerations. First, the uncertainty associated with both the 
measurement and the production phases must be taken in to account. As such, 
the relevant probability distribution would be the joint posterior of the sam-
ple interval and production time conditioned on the measurement, (tp, ts|tm). 
Second, the definition of the cost function should concern the sample interval 
and production time; that is, l(tp, ts). The appropriate posterior expected loss 
could then be minimized as 

t f t l t t t t t dt dte l m
te

p s p s m s p( ) argmin ( , ) ,  

The delta and least-squares cost functions in this optimization problem do not 
correspond to the mode and mean of the joint posterior and derivation of the 
optimal solution is more involved and beyond the scope of our study. Nonetheless, 
we note that the corresponding estimators for the Bayesian observer-actor are 
qualitatively similar to those we derived for the MAP and BLS mapping rules in 
our simplified Bayesian observer model.

Fitting the model to the data. We assumed that tp values associated with any ts 
were independent across trials and thus expressed the joint conditional probabil-
ity of individual tp values across all N trials and across the three prior conditions 
by the product of their individual conditional probabilities. 

p t t t t t w w p t t w wp p p p
N

s m p p
i

s m p
i

N
( , , , , , , ) ( , , )1 2 3

1  

The products change to sums by taking the logarithm of both sides. 

log ( , , , , , , ) log ( , , )p t t t t t w w p t t w wp p p p
N

s m p p
i

s m p
i

N
1 2 3

1  

Each term in the sum was derived from equation (12), after substituting f(tm) with 
the appropriate estimator function (equations (6), (7) or (8)).

We used this equation to maximize the likelihood of model parameters wm and 
wp across all ts and tp values measured psychophysically. The maximization was 
done using the fminsearch command in MATLAB (Mathworks), which incor-
porates the Nelder-Mead downhill simplex optimization method. Integrals of 
equations (8) and (12) are not analytically solvable and were thus approximated 
numerically using the trapezoidal rule. We evaluated the success of the fitting 
exercise by repeating the search with different initial values; the likelihood func-
tion near the fitted parameters was highly concave and the fitting procedure was 
stable with respect to initial values.

(13)(13)

(14)(14)

(15)(15)
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