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Neural mechanisms of rapid natural scene
categorization in human visual cortex
Marius V. Peelen1,2,3, Li Fei-Fei1,4 & Sabine Kastner1,2,3

The visual system has an extraordinary capability to extract
categorical information from complex natural scenes. For example,
subjects are able to rapidly detect the presence of object categories
such as animals or vehicles in new scenes that are presented very
briefly1,2. This is even true when subjects do not pay attention to the
scenes and simultaneously perform an unrelated attentionally
demanding task3, a stark contrast to the capacity limitations
predicted by most theories of visual attention4,5. Here we show a
neural basis for rapid natural scene categorization in the visual
cortex, using functional magnetic resonance imaging and an object
categorization task in which subjects detected the presence of
people or cars in briefly presented natural scenes. The multi-voxel
pattern of neural activity in the object-selective cortex evoked by
the natural scenes contained information about the presence of the
target category, even when the scenes were task-irrelevant and
presented outside the focus of spatial attention. These findings
indicate that the rapid detection of categorical information in
natural scenes is mediated by a category-specific biasing mecha-
nism in object-selective cortex that operates in parallel across the
visual field, and biases information processing in favour of objects
belonging to the target object category.

In daily life we often look for particular object categories in our
environment that are relevant for ongoing behaviour. For example,
before crossing a street we look whether cars are near, perhaps not
noticing other objects in the visual scene present at the same time, such
as people walking on the other side of the street. Behavioural experi-
ments have shown that such detection of familiar object categories in
natural scenes is extremely rapid1,2, and can be done even without focal
attention3. These results indicate the existence of selection mechanisms
for familiar object categories that operate independently of spatial
attention.

In the present study, using functional magnetic resonance imaging
(fMRI), we investigated neural mechanisms for extracting object cat-
egory information from complex natural scenes. We proposed that
the rapid detection of categorical information may be mediated by
top-down mechanisms that bias processing in favour of the searched-
for object category. These biasing mechanisms may lead to a filtering
of the scene that effectively limits the visual representation of the scene
to objects belonging to the task-relevant object category, thereby
facilitating the rapid detection of the target category. To probe this
hypothesis, we measured the influence of a category detection task
(detecting either people or cars) on fMRI activity evoked by pictures of
real-world scenes. Furthermore, given that behavioural studies have
found evidence for parallel processing in rapid scene categoriza-
tion3,6,7, we asked whether such influences can be observed both inside
and outside the focus of spatial attention.

A large (.2,000 pictures) set of photographs of outdoor scenes
(cityscapes and landscapes; Supplementary Fig. 1) was selected for

the experiment. A subset of these scenes contained people or cars
in natural, daily-life situations. As in natural vision, the visual
appearances and spatial locations of the people and cars in these
scenes were highly variable. For example, a scene could show a single
person sitting on a bench in a park close to the camera, or could show
a group of people walking on a street at a distance (Supplementary
Fig. 1). On each trial, subjects briefly (,130 ms, see Methods) viewed
four different simultaneously presented pictures (two along the
vertical axis, and two along the horizontal axis8), followed immedi-
ately by perceptual masks presented at the same locations (Fig. 1).
The task was to report the presence of either people (‘body task’) or
cars (‘car task’) in the horizontally or vertically presented pictures,
resulting in four different task combinations. These four combina-
tions were always performed in separate functional runs to prevent
confusion about the target category and task-relevant picture loca-
tions. We will refer to the task-relevant pictures as ‘attended’
pictures, and the task-irrelevant pictures as ‘unattended’ pictures.
A separate analysis confirmed that subjects spatially attended the
task-relevant pictures more than the task-irrelevant pictures, by
showing spatially-specific attentional modulation in retinotopic
visual cortex (see Supplementary Fig. 2). The content of the attended
pictures was manipulated independently from the content of the
unattended pictures, such that all possible pairings of scene types
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     500 ms           130 ms        270 ms

Figure 1 | Schematic overview of trial layout. Each trial started with a
spatial cue indicating the relevant stimulus locations (which were held
constant within a run). This was followed by the four pictures presented for,
on average, 130 ms. Presentation time of the pictures was adjusted for each
subject to arrive at ,80% accuracy. The pictures were followed by
perceptual masks (270 ms). The next trial started, on average, 1,300 ms after
the offset of the masks.
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were equally likely. This design allowed us to measure brain responses
to attended and unattended pictures separately by means of selective
averaging.

We analysed multi-voxel patterns of activation across the object-
selective visual cortex, as these have been shown to be sensitive to
object-category information9,10. The object-selective visual cortex,
often referred to as the lateral-occipital complex, was localized in
each subject by contrasting responses to intact versus scrambled
objects in a separate localizer scan11. The analysis approach was to
correlate response patterns evoked by the two scene types (containing
either people or cars) in the main experiment with response patterns
evoked by a different set of pictures of human bodies and cars
presented in a separate experiment (Fig. 2; Methods Summary).
Unlike the stimuli in the main experiment, this second set of stimuli
consisted of isolated objects without scene context that were centrally
presented. We expected to find, in the case of the car stimuli for
example, a higher correlation between response patterns evoked by
scenes containing cars with response patterns evoked by isolated car
pictures (within-category comparison) than with response patterns
evoked by isolated body pictures (between-category comparison). We
found that response patterns indeed correlated more strongly for
within-category comparisons than between-category comparisons
(T9 5 4.1, P , 0.005; Fig. 3a), a difference that tended to be stronger
for the attended than the unattended pictures (main effect of atten-
tion: F1,9 5 3.9, P 5 0.08). This suggests a high-level representation of
object-category information that is invariant to the different viewing
conditions, many of which are typically encountered in daily life.

Of central interest to the present study was the effect of search task
on this category information. Notably, category information
depended fully on search task (category 3 task: F1,9 5 13.5,
P , 0.01; Fig. 3a). During the body task, patterns of activation carried
significant category information about bodies (T9 5 5.0, P , 0.001),
but not cars (T9 5 20.5). Conversely, during the car task significant
category information was present for cars (T9 5 2.9, P , 0.05), but
not for bodies (T9 5 21.8). Furthermore, the category 3 task inter-
action was independent of spatial attention (category 3 task 3 atten-
tion: F1,9 5 0.1, P 5 0.79), and significant for both the attended
(F1,9 5 11.7, P , 0.01) and the unattended pictures (F1,9 5 10.5,
P , 0.05). For these analyses we sorted trials on the basis of the
content of either the attended or the unattended pictures. Because
the content of these two picture pairs was fully independent, the
content of one picture pair was effectively ‘averaged out’ when

measuring responses to the other picture pair, and vice versa. To
ensure further that the results we have described were not related
to the simultaneously presented other picture pair, we calculated the
category 3 task interaction separately for the different simulta-
neously presented conditions. As expected, the category 3 task inter-
action for the attended pictures did not depend on the content of the
unattended pictures, and vice versa (P . 0.1, for both tests). Finally,
to test whether these results were specific to higher-level visual cortex,
we performed the same analyses in retinotopically defined visual
areas V1, V2 and V3. None of these regions contained category
information, and there were no significant effects of task or category
(P . 0.1, for all tests).

These results indicate that body and car stimuli embedded in
natural scenes were visually processed to a high level only when they
were actively searched for. Objects belonging to the target category
were processed up to the category level, even when they were presented

Figure 2 | Schematic overview of analysis approach. The approach of the
multi-voxel pattern analysis was to correlate patterns of activation to
conditions in the main experiment (depicted on the left) with patterns of
activation to conditions in the category localizer (depicted on the right). The
thickness of the lines between patterns indicates the hypothesized strengths
of the correlations. For example, higher correlations were expected between
patterns evoked by scenes containing people and isolated body pictures
(within-category comparison) than with isolated car pictures (between-
category comparison). This approach allowed us to measure the influence of
search task and spatial attention on category information in visual cortex.
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Figure 3 | Results of multi-voxel pattern analysis. a, The top panel shows
the ventral cluster of object-selective cortex (intact versus scrambled
objects) in a group-average analysis at P , 0.005 (Talairach coordinates of
peak: x 5 35, y 5 241, z 5 218). The lower panel shows category
information as a function of category, task and attention in individually-
defined object-selective cortex. Category information was calculated by
taking the difference between within-category comparisons and between-
category comparisons, and reflects the amount of category information in
multi-voxel patterns of activation (see Fig. 2 and Methods Summary). Error
bars indicate 6 s.e.m. b, The top panel shows the result of the category 3

task contrast in the group-average searchlight analysis at P , 0.005
(uncorrected). The lower panel shows category information as a function of
category, task and attention in the sphere surrounding the peak voxel of the
activation from the group-average searchlight analysis (Talairach
coordinates of peak: x 5 35, y 5 244, z 5 218). Error bars indicate 6 s.e.m.
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outside the focus of attention. In contrast, objects belonging to the
irrelevant category were not represented at the category level, even
when they were presented inside the focus of attention.

To investigate whether other regions in the brain may show similar
effects to those observed in object-selective visual cortex, we used an
information-based functional brain mapping approach, measuring
patterns of activation throughout the brain by means of a spherical
searchlight12. Within a given sphere, we correlated patterns of activa-
tion to the conditions in the main experiment with patterns of activa-
tion to the separately presented isolated body and car stimuli,
identical to the analysis in object-selective cortex. Individual subject
data were spatially normalized, which allowed us to use a random-
effects group analysis to test where in the brain search task influenced
category information. The most significant category 3 task inter-
action was found in the ventral temporal cortex, overlapping the
object-selective visual cortex (Fig. 3b). The correlation values in
the sphere surrounding the peak voxel of this cluster were very similar
to those of the a priori defined object-selective region (Fig. 3). As
expected (given the selection of the sphere), category information
(within- versus between-category comparison) depended strongly
on the search task (category 3 task: F1,9 5 34.9, P , 0.0005; Fig. 3b).
During the body task, patterns of activation carried significant
information about bodies (T9 5 8.9, P , 0.00001), but not cars
(T9 5 20.6), whereas for the car task, significant information was
present for cars (T9 5 5.8, P , 0.0005), but not (or negative) for
bodies (T9 5 22.6). The category 3 task interaction was independent
of attention (category 3 task 3 attention: F1,9 5 0.1, P 5 0.81), and
significant for both the attended (F1,9 5 16.6, P , 0.005) and the
unattended pictures (F1,9 5 35.6, P , 0.0005). This analysis demon-
strated that the effect of search task on category information was
strongest in the ventral temporal cortex, and could be observed in a
group-average analysis without defining individual a priori regions-
of-interest.

The present results provide evidence for a neural mechanism of
attentional selection at the level of object category. Notably, this
mechanism in high-level visual cortex seems to operate across the
visual field independent of spatial attention, similar to attentional
selection mechanisms for simple features (for example, for colour or
motion direction) in lower-level visual cortex13–15. As such, it
provides a neural basis for recent behavioural findings reporting an
extraordinary capability of the human visual system to rapidly extract
object category information from natural scenes, even outside the
focus of spatial attention3. The selection mechanism described here
may operate through the pre-activation of neurons representing the
target category that subsequently biases the processing of the scene in
favour of the target category16. Such an account of our data are in line
with parallel models of visual search, in which a ‘search template’
biases the processing of a scene across the visual field in favour of
objects that match the template17,18. Given the variability in the visual
characteristics and spatial locations of individual category exemplars
in natural scenes, such search templates would need to be rather
abstract, invariant to geometric and photometric changes, and
spatially unspecific. Furthermore, successful performance in our task
required extra, space-based, selection mechanisms to prevent
responses to the task-irrelevant pictures (see Supplementary Table 1
and Supplementary Discussion). Our results indicate that these
additional selection mechanisms (for example, the retinotopically
specific spatial attention effects observed in the retinotopic visual
cortex; see Supplementary Fig. 2) operate mostly independently from
the object-category mechanism observed in activity patterns in
object-selective cortex.

Furthermore, the finding that objects belonging to the irrelevant
object category were poorly represented in high-level visual cortex,
even when they were spatially attended, is consistent with the phe-
nomenon of ‘change blindness’, the finding that we are mostly
unaware of large changes to objects in natural scenes when the identity
of the changed object is unknown in advance19–21. Indeed, our results

provide evidence that, contrary to our subjective experience of a
complete internal representation of the external world, the neural
representation of real-world scenes is limited to those objects that
are directly relevant for ongoing behaviour22.

Together, the present results provide a possible neural basis for
both the limitations in our perception of real-world scenes and our
remarkable ability for categorizing such scenes inside and outside the
focus of spatial attention.

METHODS SUMMARY

Ten healthy adults (three females) participated in eight runs of the main experi-

ment across two scanning sessions. In different runs, subjects performed one of

two detection tasks on either the horizontal or the vertical pairs of pictures,
resulting in four different run types. Within a scanning session, each of the

presented pictures was unique. The same set of pictures was used in both sessions,

such that across the two sessions the same pictures were presented in both detec-

tion tasks.

Activity patterns to the body and car conditions in the category localizer were

correlated with activity patterns to the body and car scenes in the main experi-

ment. This resulted in four correlations (for example, between body scenes in the

main experiment and bodies in the localizer: r_body(main)_body(localizer)).

Within-category correlations are the correlations where categories matched (for

example, r_car(main)_car(localizer)), whereas between-category correlations

are the correlations between non-matching categories (for example, r_car

(main)_body(localizer)). Category information was defined as the difference
between within-category and between-category correlations. For example,

category information (Dr) for the body stimuli (left two bars in Fig. 3) was

calculated by: (r_body(main)_body(localizer)) 2 (r_body(main)_car(localizer)).

Functional (echoplanar imaging (EPI) sequence; 34 slices per volume; reso-

lution 5 3 3 3 3 3 mm with 1 mm gap; repetition time (TR) 5 2.0 s; time to

echo (TE) 5 30 ms; flip angle 5 90u) and anatomical (MPRAGE sequence; 256

matrix; TR 5 2.5 s; TE 5 4.38 ms; flip angle, 8u; 1 3 1 3 1 mm resolution)

images were acquired with a 3T Allegra MRI scanner (Siemens). Functional data

were slice-time corrected, motion corrected, and low-frequency drifts were

removed with a temporal high-pass filter (cutoff of 0.006 Hz). No spatial

smoothing was applied.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Stimuli. Two-thousand-and-fifty-six natural scene pictures were selected from

an online database23. Five-hundred-and-twelve pictures contained one or more

people (but no cars), 512 pictures contained one or more cars (but no people),

and 1,024 pictures contained no cars and no people. The pictures were mostly

photographs of city streets. The position, viewpoint and size of the people and

cars in the pictures were highly variable, mimicking real-world viewing condi-

tions (see Supplementary Fig. 1 for sample pictures). Twelve different perceptual

masks were created. Each was a coloured picture of a mixture of white noise at

different spatial frequencies on which a naturalistic texture was superimposed24.
All pictures were full-colour photographs reduced to 480 (vertical) 3 640

(horizontal) pixels. The pictures along the horizontal axis (size: 7.9u3 10.5u)
were presented with an offset of 3.5u to the right or left of the central fixation

cross. The pictures along the vertical axis (size: 4.5u3 6u) were presented with

an offset of 0.5u above or below the central fixation cross.

General procedure. Each subject participated in one practice session and four

scanning sessions. The first scanning session was used for mapping retinotopic

visual areas. The second and third session consisted of four runs of the main

experiment, two runs of the category pattern localizer, and two runs of the

object-selective cortex localizer. The fourth session consisted of a position loca-

lizer to measure retinotopic representations corresponding to the picture posi-

tions in the main experiment. See Supplementary Methods for details of the

localizer experiments. Data were analysed using the AFNI software package25

and MATLAB (The MathWorks).

Main experiment. Each run started and ended with a fixation-only block of 14 s.

The average trial duration was 2.2 s. Each trial started with a 500 ms presentation

of four placeholders at the location of the to-be-presented pictures. The place-

holders of the relevant locations (either the two horizontal, or the two vertical
locations) were highlighted during this time, by increasing the width of the

placeholder outline by 2 pixels (,0.05u). This was followed by the presentation

of the four pictures for 130 ms on average. The presentation time of the pictures

was individually determined on the basis of the performance in a separate session,

and was held constant within a scanning session (see Supplementary Methods). A

presentation of perceptual masks directly followed the picture presentations. The

combined duration of picture and mask presentations was always 400 ms. A

screen with the four placeholders followed the presentation of the masks for a

duration of 950 to 1,650 ms (pseudo-randomly chosen, with intervals of 100 ms),

with a mean duration of 1,300 ms.

On 20% of the trials (32 trials per run) only the masks (but no pictures) were

presented, for 270 ms on average. On the remaining 128 trials, four simultaneously

presented pictures were presented followed by four masks (each randomly selected

from the total set of 12 masks). Each of the four scenes could contain either: people

but no cars (‘body’), cars but no people (‘cars’); or no people and no cars (‘none’).

Within each pair of pictures (horizontal and vertical) there were eight possible

combinations of these scene types: body–none, none–body, cars–none, none–cars,

body–cars, cars–body, none–none and none–none. Each of these combinations
was presented equally often. Trial order was randomized (without replacement).

Our research questions focused on the scene combinations that contained

either people but no cars, or cars but no people. The other scene combinations

were included in the design so that the irrelevant object category did not predict

the presence or absence of the relevant object category.

In different runs, subjects performed one of two detection tasks (‘body task’ or

‘car task’) on either the horizontal or the vertical pairs of pictures, resulting in

four different run types. The task was to press one button for the presence and

another button for the absence of the target category in the relevant picture pair.

The mapping of the two buttons (index and middle finger) to present and absent

responses was counterbalanced across sessions and subjects. Subjects always

performed two runs of the same task in a row, to prevent frequent switching

from one target category to another. The order of the tasks was counterbalanced

across sessions and subjects. In different runs, subjects performed the tasks on

either the horizontal or vertical picture pairs, the order of which was held con-

stant within a session, and which was counterbalanced across the two sessions.

Multi-voxel pattern analysis. For each subject, general linear models were

created for the main experiment and the category pattern localizer experiment.

One predictor (convolved with a standard model of the haemodynamic response

function) modelled each condition. Regressors of no interest were also included

to account for differences in the mean magnetic resonance signal across scans and

for head motion within scans. Two separate regression analyses were run for the

main experiment; with trials grouped based on either the task-relevant or task-

irrelevant pairs of scene pictures. These regression analyses resulted, for each

voxel, in a t-value for each condition in the main experiment and for each con-

dition in the localizer. The t-values of conditions in the main experiment were

correlated, across the voxels of a region of interest (ROI), with t-values of the body

and car conditions in the localizer. The analyses were repeated using parameter

estimates instead of t-values, which yielded highly similar results. The analysis was

done for each subject and session separately. Correlations were Fisher-

transformed before statistical testing: 0.5ln[(1 1 r)/(1 2 r)]. Correlations of the

two sessions were averaged. For each subject, ROI and localizer condition, the

average correlation across conditions in the main experiment was subtracted out

to remove overall differences in correlations that were not of interest. Differences

between the resulting voxelwise correlations were then tested using repeated-

measures analysis of variance (ANOVA) and t-tests (two-tailed) with subject

(n 5 10) as random factor. All trials (correct and incorrect) were included in

the analyses. We repeated all analyses on correct trials only, which yielded

qualitatively similar but slightly less significant results (due to the smaller number

of trials).

Searchlight analysis. A whole-brain pattern analysis was performed using a

spherical searchlight12. For each voxel in the brain we computed voxelwise correla-

tions in a sphere of 10-mm radius (corresponding to 121 voxels) centred on this

voxel. The voxelwise correlations were computed as described above. The correla-

tion values from each sphere were Fisher-transformed and assigned to the centre

voxel of this sphere. The correlations were computed for each subject and session

separately. Results were transformed into Talairach space, the correlations of the

two sessions were averaged for each subject, and random-effects group analyses

were performed.
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