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It is well-established that some aspects of perception and action can
be understood as probabilistic inferences over underlying proba-
bility distributions. In some situations, it would be advantageous
for the nervous system to sample interpretations from a probability
distribution rather than commit to a particular interpretation. In
this study, we asked whether visual percepts correspond to sam-
ples from the probability distribution over image interpretations, a
form of sampling that we refer to as Bayesian sampling. To test
this idea, wemanipulated pairs of sensory cues in a bistable display
consisting of two superimposed moving drifting gratings, and we
asked subjects to report their perceived changes in depth ordering.
We report that the fractions of dominance of each percept follow
the multiplicative rule predicted by Bayesian sampling. Further-
more, we show that attractor neural networks can sample proba-
bility distributions if input currents add linearly and encode
probability distributions with probabilistic population codes.

Bayesian inference | neuronal network | neuronal noise | perceptual
bistability

There is mounting evidence that neural circuits can implement
probabilistic inferences over sensory, cognitive, or motor

variables. In some cases, humans can perform these inferences
optimally, as in multi-cue or multisensory integration (1–8). For
complex tasks, such as object recognition, action perception, and
object tracking, the computations required for optimal inference
are intractable, which implies that humans must use approximate
inferences (9–11). One approximate scheme that is particularly
appealing from a biological point of view is sampling. Consider
as an example the problem of object recognition. The goal of
the inference in this case would be to compute the probability over
object identities given the image. Although this probability dis-
tribution may be difficult to compute explicitly, one can often
design algorithms to generate samples from the distribution,
allowing one to perform approximate inference (12, 13). Some
human cognitive choice behaviors suggest that the nervous system
implements sampling. However, whether the same is true for low-
level perceptual processing is currently unknown.
Stimuli that lead to bistable percepts (14–18), like the Necker

cube, provide a tractable experimental preparation for testing the
sampling hypothesis. With such stimuli, perception alternates
stochastically between two possible interpretations, a behavior
consistent with sampling as suggested by several works (16, 19,
20). However, the key question is what probability distribution is
being sampled. If the brain uses sampling for Bayesian inference,
neural circuits should sample from an internal probability distri-
bution on possible stimulus interpretations that are conditioned
on the available sensory data, the so-called posterior distribution.
This distribution places important constraints on the distributions
of perceptual states for bistable stimuli.
To test this idea, we used stimuli composed of two drifting

gratings whose depth ordering is ambiguous (21). We then ma-
nipulated two depth cues to vary the fractions of dominance of the
percepts. Our central prediction is that the fractions of dominance
of each percept should behave as probabilities if they are the re-
sult of a sampling process of a posterior distribution over image
interpretations. We will refer to this form of sampling as Bayesian
sampling. First, we show that subjects’ fractions of dominance in
different cue conditions follow the same multiplicative rule as

probabilities in the Bayesian calculus, suggesting that bistable
perception is indeed a form of Bayesian sampling. Second, we
describe possible neural implementations of a Bayesian sampling
process using attractor networks, and we discuss the link with
probabilistic population codes (22).

Results
Multiplicative Rule for Combining Empirical Fractions of Dominance.
We asked subjects to report their spontaneous alternations in
perceived depth ordering of two superimposed moving gratings
over a 1-min period and measured the fraction of dominance time
for each percept (Methods and Fig. 1A). In the first experiment,
the two drifting gratings, α and β, were parameterized by their
wavelength and speed. One of the wavelengths was always set to
a fixed value λ*, and one of the speeds was set to a fixed value v*.
The remaining wavelength and speed parameters, λ and v, re-
spectively, determined the difference in wavelength and speed
between gratings α and β, denoted Δλ and Δv, and hence, the
information for choosing grating α as the one behind. We refer to
these differences as the cues to depth ordering, and we refer to
the condition where the two differences are zero as the neutral
cue condition (Δλ = 0 and Δv = 0). These cues have been shown
to have a strong effect on the depth ordering of the gratings be-
cause of their relationship with the natural statistics of wavelength
and speed of distant objects (21). In the second experiment, we
manipulated wavelength and disparity, d, of the gratings. In this
case, the label v should be interchanged with the label d.
According to the Bayesian sampling hypothesis, the empirical

fractions of dominance arise from a process that samples the
posterior distribution on possible scene interpretations given the
sensory input. As we show in SI Methods, when two conditionally
independent cues are available (i.e., the values of the cues are
independent when conditioned on true depth), an optimal sys-
tem should sample from a probability distribution given by the
normalized product of the probability distributions derived by
varying each cue in isolation while keeping the other cue neutral.
Our hypothesis implies that the empirical fractions should be-
have as probabilities, and therefore, they should follow the
multiplicative rule (Eq. 1)

fλv ¼ fλ fv
fλ fv þ ð1− fλÞð1− fvÞ; [1]

where fλv is the fraction of time that subjects report percept A
(grating α moving behind grating β) when the cues are set to Δλ
and Δv, fλ is the fraction of dominance of percept A when the
speed cue is neutral (Δv = 0) while the wavelength cue has value
Δλ, and fv is the dominance fraction when the wavelength cue is
neutral (Δλ = 0) while the speed cue has value Δv. This relation
holds whether subjects are sampling from posterior distributions
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on depth or posterior distributions raised to an arbitrary power
n (SI Methods). The multiplicative rule provides an empirical
consistency constraint for Bayesian sampling. Note that this rule
does not specify how the samples are extracted over time [i.e., it
works whether the samples are independent over time (23, 24) or
correlated]. As discussed later, bistable perception is only con-
sistent with a sampling mechanism that generates correlated
samples (i.e., the percept tends to remains the same over hun-
dreds of milliseconds).

Observed vs. Predicted Fractions of Dominance. The multiplicative
rule was tested in two experiments. In the first experiment, the
wavelength and speed differences between the two gratings, Δλ
and Δv, were changed from trial to trial congruently [C condition
(i.e., both cues favoring the same depth ordering); example in
Fig. 1B] or incongruently [IC condition (i.e., the cues favored
different depth orderings)]. This change was achieved by de-
creasing the wavelength and increasing the speed of grating α in
the C condition, while decreasing the wavelength of grating α
and increasing the speed of grating β in the IC condition. In the
second experiment, the wavelength and stereo disparity (instead
of speed) of the gratings were manipulated in the C and IC
conditions as in the previous experiment.
As shown in Figs. 2 and 3, wavelength, speed, and disparity

differences in the gratings have a strong impact on the fractions of
dominance of the gratings’ depth ordering (21). The fraction of
dominance of percept A (grating α is behind grating β) increases
as the wavelength difference between gratings α and β (Δλ= λα −
λβ) decreases. The fraction increases as the speed difference be-
tween gratings α and β (Δv= vα − vβ) increases in the C condition
(Fig. 2A). Conversely, the fraction decreases as the difference (in
speed or wavelength) between the gratings decreases in the IC
condition (Fig. 2B). In the second experiment, the fraction of
dominance of percept A increases as the disparity difference be-
tween gratings α and β (Δd= dα − dβ) increases in the C condition
(Fig. 3A). Again, the reverse pattern is observed in the IC con-
dition (Fig. 3B). In the two experiments, when the two cues are set
to their neutral values, the fractions (Figs. 2 and 3, black open
circles) are not significantly different from one-half [two-tailed
t test; experiment 1: p= 0.39 (C), p= 0.06 (IC) and experiment 2:
p = 0.31 (C), p = 0.051 (IC)].
The experimental results were compared with the theoretical

predictions from the multiplicative rule (Eq. 1) (Figs. 2 A and B
and 3 A and B). The predictions when the two cues are non-
neutral (Figs. 2 A and B and 3 A and B, filled blue circles) were

computed using the experimental data of the single nonneutral
cue cases only (Figs. 2 A and B and 3 A and B, open red circles).
The case in which wavelength is the only nonneutral cue corre-
sponds to the lower line of open circles in Figs. 2A and 3A and
the upper line in Figs. 2B and 3B in both experiments. The cases
in which speed (or disparity) is the only nonneutral cue corre-
spond to the vertical line of open circles in the wavelength and
speed (or disparity) experiment in Fig. 2B (Fig. 3B respectively).
The match between the observed data points (filled red circles)
and predictions is tight, even though the multiplicative rule is
parameter-free and cannot be adjusted to match the experimental
results (note that, for the sake of clarity, the blue dots have been
slightly displaced to the right). The data in Figs. 2 A and B and 3 A
and B were replotted in Figs. 2C and 3C to show the predicted
fraction of dominance from the multiplicative model vs. the ob-
served fraction when the two cues were nonneutral with the C
(Figs. 2C and 3C, light blue dots) and IC (Figs. 2C and 3C, dark
blue) conditions combined. The strong alignment of the data
points along the unity line confirms that the multiplicative rule
provides a tight fit to the data. Individual subjects also followed
the multiplicative rule (SI Methods and Fig. S1).
We also tested alternative models to the multiplicative rule. In

the first model, we assumed that integration between the cues
does not take place—a strongest cue take all model. In this model,
performance is driven by the cue with the lowest uncertainty: The
fraction of dominance when both cues are varied together is set to
that of the cue whose fraction when the cues are manipulated
alone has the largest absolute value difference with respect to one-
half (SI Methods). As shown in Figs. 2D and 3D (brown dots) this
model fails to capture our experimental results. In the second
model, we generated predictions from a realistic neuronal network
(see Results, Sampling with Realistic Neural Circuits). When the
input neurons to the network fired nonlinearly in response to the
stimuli (25), the predictions of the model, which fit the single
nonneutral cue conditions, substantially differed from the experi-
mental data in the four nonneutral cues conditions (NL net) (Figs.
2D and 3D, orange dots). When the input neurons fired linearly
(26), the predictions were identical to the multiplicative rule
(L net) (Figs. 2D and 3D, blue dots). This result shows that the
mere fact that a network can oscillate stochastically between two
percepts in a way suggestive of sampling does not guarantee that it
will also follow the multiplicative rule. Whether it does depends
critically on how the inputs are combined, a point that we discuss
more thoroughly below.

Fig. 1. Cue combination in a perceptually bistable
stimulus. (A) The visual stimulus consisted of two
superimposed drifting gratings moving in different
directions. The perceived depth ordering of the
gratings is bistable. We measured the fraction of
dominance of each percept by asking subjects to
report the perceived depth ordering of the gratings
during trials of 1-min duration (hypothetical trial
shown). (B) Cue combination. (Upper Left) Fractions
of dominance for each depth ordering when wave-
length is nonneutral (its value differs between the
two gratings), whereas speed is neutral (its value is
identical across gratings). Upper Right is the same as
Upper Left, but when speed is nonneutral, the
wavelength is neutral. (Lower) Fraction of domi-
nance when both speed and wavelength are non-
neutral. Bayesian sampling predicts that the
fraction of dominance when both cues are non-
neutral is equal to the normalized product of the
fractions of dominance when only one cue is non-
neutral (Eq. 1). In the example illustrated here, both
cues were congruent.
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Diffusion in an Energy Model. Our finding that bistable perception
behaves like a Bayesian sampling process raises the issue as to
how neurons could implement such a process. We first show that
implementing the multiplicative rule is surprisingly straightfor-
ward with energy models. In Results, Sampling with Realistic
Neural Circuits, we will present a neural instantiation of this
conceptual framework. We model the dynamics of two neural
populations, A and B, whose states are described by their firing
rates rA and rB, respectively (Fig. 4A). The reduced dynamics
tracks the difference between the firing rates, r = rA − rB, where
r > 0 corresponds to percept A. This variable obeys (Eq. 2)

τ
d
dt
r ¼ − 4rðr2 − 1Þ þ gðIλ; IvÞ þ nðtÞ; [2]

where g(Iλ, Iv) is a bias provided by the inputs and n(t) is a filtered
white noise with variance σ2 (27) (SI Methods). The first term on
the right-hand side ensures that the activity difference, r, hovers
around the centers of the two energy wells (Fig. 4B). The bias term
measures the combined strength of the cues, which is a function of
the individual strengths Iλ and Iv favoring percept A from the
wavelength and speed cues, respectively. The function gðIλ; IvÞ is
chosen such that it is zero when the two cues are neutral (zero

currents) and positive when the two cues favor percept A (the two
currents are positive). The dynamics ofEq. 2 can be viewed as a noisy
descent over the energy landscape EðrÞ ¼ r2ðr2 − 2Þ− gðIλ; IvÞr,
which is symmetrical (Fig. 4B, black line) when the two cues are
neutral and negatively tilted (Fig. 4B, gray line) when the cues favor
perceptA. The resulting dynamics effectively draws samples from an
underlying probability distribution that depends on the input cur-
rents (a process known as Langevin Monte Carlo sampling) (28).
To model the experimental data that we have described, we

need a form of sampling that obeys the multiplicative rule.
Whether the network obeys the rule or not depends critically on
the function gðIλ; IvÞ. We consider here the family of functions
described by gðIλ; IvÞ ¼ Iλ þ Iv þ εðI2λ Iv þ I2v IλÞ, where εmeasures
the strength of the nonlinearity. Similar nonlinear functional
dependences on the input currents naturally arise in neuronal
networks with nonlinear activation functions (Results, Sampling
with Realistic Neural Circuits).
For a value of ε different from zero, the dynamical system does

not follow the multiplicative rule (Fig. 4D). In contrast, if we set
ε to zero, such that gðIλ; IvÞ ¼ Iλ þ Iv, the system now obeys the
multiplicative rule (Fig. 4E). This result can be derived analyti-
cally by computing the mean dominance duration of each per-
cept, which corresponds to the mean escape time from one of the
energy wells (SI Methods). We can then show that the fraction of
dominance of population A for ε equal to zero is a sigmoid
function of the sum of the inputs (Eq. 3)

fλv ¼ f ðs ¼ A j Iλ; IvÞ ¼ 1

1þ e− 2ðIλþIvÞ=σ2eff
∝ e ðIλþIvÞ=σ2eff; [3]

where σ2eff is the effective noise in the system and is proportional
to σ2. Note that when only one cue is nonneutral, fi ∝ eIi=σ

2
eff (i= λ,

v), and when both cues are nonneutral, fλv ∝ eðIλþIvÞ=σ2eff . There-
fore, the fractions are related through fλv ∝ fλ × fv, and after
normalization, they follow the multiplicative rule (Eq. 1). Fig. 4F
shows that Eq. 3 is indeed satisfied by the diffusion model, be-
cause the fraction of dominance of percept A obtained from
numerical simulations as a function of the total input current
(Fig. 4F, blue line) is a sigmoid function (Fig. 4F, red line). This

C D

A B

Fig. 2. Experimental and predicted fractions of dominance in the wave-
length and speed cue combination experiment. (A) Fraction of dominance of
percept A (i.e., grating α is behind grating β) as a function of the wavelength
difference between gratings α and β (Δλ = λα − λβ) for three different speed
differences (Δv = vα − vβ) in the congruent condition (both cues favored the
same depth ordering). Data are averaged across subjects, and the error bars
correspond to SEM across subjects. Experimental observations (red and black)
and predictions from the multiplicative rule (blue circles) (Eq. 1) are shown.
The predictions from the multiplicative rule were computed using the ex-
perimental data from the conditions in which only one cue was nonneutral
(open circles). The black open circles correspond to the fractions measured
when the two cues were neutral. The predictions are displaced slightly right
in relation to the experimental data (filled red circles) to allow better visual
comparison. (B) Same as in A but for the incongruent condition (the cues
favored opposite percepts). (C) Predicted fractions of dominance for the
multiplicative rule combining the data from the congruent (C; light blue) and
incongruent (IC; dark blue) conditions from A and B as a function of the
empirical fractions. (D) Same as in C but for the strongest cue take all rule
(brown) and a rate-based model with nonlinear (orange) and linear (blue)
input neurons.

C D

A B

Fig. 3. Experimental and predicted fractions of dominance in the wave-
length and disparity cue combination experiment. A–D are the same as in
Fig. 2 but with speed replaced by disparity.
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analytical approach can also be used to reveal why the system
with a nonlinear function does not follow the multiplicative rule.
Because in this case, fλv ∝ egðIλ;IvÞ=σ

2
eff , the product of the fractions

when only one cue is nonneutral is not equal to the fraction when
the two cues are nonneutral.

Sampling with Realistic Neural Circuits. The main features of the
energy model can be implemented in a neural network with
attractor dynamics. We consider a recurrent neural network with
two competing populations (Fig. 5A) encoding the two percepts
A and B, whose states are described by their population averaged
firing rates rA and rB, as suggested by neural data (29). An ad-
ditional relay neuronal population fires in response to the cues
and provides inputs to the competing populations A and B with
positive (direct connections) and negative (through an inhibitory
population) signs, respectively. The firing of the relay population
is a function of the sum of the cue strengths, Iλ + Iv. We consider
linear and nonlinear activation functions (SI Methods) close to

those functions found in primary visual cortex (25, 26). We also
added a slow adaptation process (30–33).
The network stochastically alternates between percepts with

gamma-like distributions of dominance durations, which cap-
tures several aspects of the experimental distributions (Fig. 5B)
(14, 17, 34–36). The distributions generated by the network are
not significantly different from those distributions obtained from
pooling data across subjects (Fig. 5B) (two-sample Kolmogorov–
Smirnov test, p > 0.05). The distributions from human data have
a coefficient of variation (CV; ratio between SD and mean) close
to 0.6, regardless of the fraction of dominance (Fig. 5C, blue
dots) (slope not significantly different from zero, p = 0.3). Al-
though the model shows a significant linear dependence on the
fraction (p < 0.05), the dependence is weak, and the CV is
consistently close to the experimental value (Fig. 5C, red dots).
Importantly, the network predicts that the mean dominance
durations of a percept should depend primarily on its fraction of
dominance. The experimental data not only show this important
qualitative feature but also follow quantitatively the idiosyncratic
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Fig. 4. Simplified network model for Bayesian sam-
pling. (A) Schematic of the neural network. (B) Energy
as a function of the difference between the firing rates
of the two populations (r = rA − rB). When the state
of the system lies close to the right or left minimum
(r is close to 1 or −1), percept A or B dominates, re-
spectively. Alternations in dominance happen because
noise can kick the system from one minimum to the
other minimum. When the two cues are neutral (black
line), the two percepts dominate for equal amounts of
time (i.e., f = 0.5). When the cues favor percept A, the
energy landscape is tilted to the right (gray line), and
f > 0.5. (C) Population rate difference r as a function of
time. Stochastic switches occur between the two states
of the system. (D and E) Fractions of dominance pre-
dicted by the multiplicative rule vs. observed fractions
of dominance generated by the model (D, orange dots
and E, blue dots) with nonlinear (D) and linear (E)
inputs (ε = 5 and ε = 0, respectively). The model’s per-
formance lies close to the unit slope line (red) only
when the inputs are combined linearly (E). (F) Fraction
of dominance of state A (r > 0) as a function of the
total input. The curve (blue) is well-fitted by a sigmoid
function (red).

B

A

C D

Fig. 5. Sampling and multiplicative rule in attractor
neural networks. (A) Architecture of the network,
linear, and nonlinear activation functions of the relay
population and resulting inputs to the network. (B)
Population firing rates as a function of time. (Upper)
Red, population A; green, population B. (Lower) Dis-
tributions of dominance durations from the neural
network model when the cues are neutral (red) and
from the pooled data across subjects (blue) for the
wavelength speed experiment in the neutral condi-
tion (n = 320). Time has been normalized so that the
mean of the distributions is one. Because the distri-
bution from the model corresponds to the case in
which the cues are neutral (zero biasing currents), it is
the same regardless of whether the activation func-
tion of the relay unit is linear or nonlinear. (C) CV of
the dominance duration distribution of a percept as
a function of its fraction of dominance for the data
averaged across subjects (blue) and model (red). (D)
Mean dominance duration of a percept as a function
of its fraction of dominance for the experimental data
averaged across subjects (blue) and for the model
(red). Model error bars correspond to SEM across
durations.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1101430108 Moreno-Bote et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1101430108/-/DCSupplemental/pnas.201101430SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1101430108


mean duration vs. fraction dependence obtained from the model
(Fig. 5D). These results hold independently of whether the ac-
tivation function of the relay population is linear (Fig. 5 B–D) or
nonlinear (SI Methods and Fig. S2).
The slow dynamics of switches indicate that bistable percep-

tion generates temporally correlated samples (successive samples
tend to be similar, which is indicated by the fact that percepts
tend to linger for hundreds of milliseconds before switching),
a property consistent with Langevin Monte Carlo sampling (28).
Therefore, the network generates a stochastic behavior con-

sistent with bistable perception and makes nontrivial predictions
about the dynamics of perceptual bistability. However, this be-
havior does not necessarily mean that the network follows the
multiplicative rule. Interestingly, when the activation function in
the relay population is nonlinear, the fractions of dominance do
not combine multiplicatively (Figs. 2D, 3D, and 6A, orange dots).
In contrast, when the activation function is linear-rectified, the
network obeys the multiplicative rule (Figs. 2D, 3D, and 6A, blue
dots). This result holds because the fraction of dominance time is
a sigmoid function of the sum of input currents when the inputs
to the network are linear (Fig. 6B, blue lines) but not when the
inputs are nonlinear (Fig. 6B, orange lines). We show in SI
Methods (Fig. S3) that these results hold even in a more realistic
network with integrate and fire neurons.

Probabilistic Population Codes and Bayesian Sampling. We have
shown in the previous sections how to build a recurrent network
that implements the multiplicative rule, but we have not shown
yet that the network samples the posterior distribution over
image interpretations specified by the input signals. If the frac-
tion of dominance for a given cue is the result of sampling the
posterior distribution over image interpretations pðsjIiÞ (here s=
{A,B} and Ii is the current induced by cue i = {λ,v}), then the
fraction of dominance and the posterior distribution should be
the same function of the input current, Ii. Because the attractor
network generates fractions of dominance that are sigmoid
functions of the current (Eq. 3), the attractor network is sam-
pling the posterior distribution only if that distribution is also
a sigmoid function of the input current, that is (Eq. 4),

pðs ¼ A j IiÞ ¼ f ðs ¼ A j IiÞ ¼ 1

1þ e− 2Ii=σ2eff
: [4]

Moreover, through Bayes rule, we know that (Eq. 5)

pðs ¼ A j IiÞ∝ pðIi j s ¼ AÞ; [5]

where the function pðIi j s ¼ AÞ corresponds to the variability in
neural responses (in this case, one input current) over multiple
presentations of the same stimulus s. Therefore, the key question
is whether neural variability in vivo has a distribution consistent
with Eqs. 4 and 5. If this is not the case, attractor dynamics would
not be sampling from the posterior distributions of s.
Experimentally, neural variability is typically assessed by

measuring the variability in spike counts for a fixed s as opposed
to the variability in input currents. Mapping input current onto
spike counts is easy if we assume, as we did earlier, that the input
current is proportional to the difference in spike counts vectors,
rA − rB, from two presynaptic populations (e.g., V1 neurons with
different depth and speed preferences) (37), one that prefers
stimulus s = A and the other that prefers stimulus s = B. One
can then show (SI Methods) that Eqs. 4 and 5 are only satisfied
when the distribution over either rA or rB given s takes the form
pðr j sÞ∝ϕðrÞexpðhðsÞ · rÞ, where h(s) is a kernel related to the
tuning curves and covariance matrix of the neural responses.
Remarkably, this family of distributions, known as the expo-
nential family with linear sufficient statistics, provides a very
close approximation to the variability observed in vivo (22, 38).

This family of distributions corresponds also to a form of neural
code known as probabilistic population codes (22). In other
words, our results show that attractor dynamics can be used to
sample from a posterior distribution encoded by a probabilistic
population code using the exponential family with linear suffi-
cient statistics.

Discussion
We have reported that the fraction of dominance in bistable
perception behaves as a probability. This result supports the no-
tion that the visual system samples the posterior distribution over
image interpretations. In addition, we showed that attractor
networks can implement Bayesian sampling only when the vari-
ability of neuronal activity follows the exponential family with
linear sufficient statistics, as observed experimentally.
This last result is important, but using the exponential family

has another advantage. Several works have reported that humans
perform near-optimal cue integration in a variety of settings (1–
8). It is, therefore, essential that the combination of inputs that
leads to the multiplicative rule in an attractor network also results
in optimal cue integration. We saw that inputs need to be added
to observe the multiplicative rule in an attractor network. Adding
two inputs does not necessarily result in optimal cue integration,
but again, when the variability of cortical activity follows the ex-
ponential family with linear sufficient statistics, it is the optimal
combination rule for cue integration (22). Therefore, the fact that
the neural variability follows the exponential family allows both
Bayesian sampling and optimal integration of evidence with at-
tractor networks.
Our study is not the first study to investigate cue combination

and perceptual bistability, but previous works did not test whether
bistable perception is akin to what we defined as Bayesian sam-
pling (19, 20). The fact that bistable perception alternates be-
tween two interpretations is certainly suggestive of a sampling
process but not necessarily of Bayesian sampling. For instance,
the orange dots in Fig. 6A show an example of a network that
stochastically oscillates with gamma-like distributions over per-
cept durations (Fig. 5B), as observed in our experimental data.
The kind of analysis that has been used in previous studies to
argue that bistable perception is a form of sampling (19, 20) would
also conclude that this network is sampling. However, this par-
ticular network does not perform Bayesian sampling; it does not
follow the multiplicative rule (Fig. 6A). In contrast, our experi-
mental results make it clear that bistable perception follows the
multiplicative rule predicted by Bayesian sampling.
Bayesian sampling has several computational advantages. For

instance, in the context of reinforcement learning, when the sta-

A B

Fig. 6. (A) Predicted fractions from the multiplicative rule vs. observed
fractions of dominance generated by the neural network with nonlinear
(orange) and linear (blue) inputs (SI Methods). As observed with the energy
model (Fig. 4E), the network follows the multiplicative rule only when the
relay population has a linear activation function. (B) Fraction of dominance
of state A as a function of the total input when the relay population is
nonlinear (orange) and linear (blue). The latter are well-fitted by a sigmoid
function (red), which was the case with the energy model (Fig. 4F).
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tistics of the world is fixed, the optimal solution involves picking
the action that is the most likely to be rewarded; however, when
the statistics of the world change over the time, sampling from the
posterior distribution, which is a form of exploratory behavior
(21, 39), is more sensible (40). Interestingly, bistable perception
implements a form of sampling that could be used to smoothly
interpolate between pure exploration (sampling from the poste-
rior) and pure exploitation (choosing the action that is the most
likely to be rewarded). Indeed, our results suggest that bistable
perception samples from posterior distributions that are raised
to a power, pn, where n can take any value (SI Methods). When n
is large, the most likely state is sampled on almost every iteration,
which corresponds to exploitation, whereas setting n close to zero
leads to exploratory behavior.
The fact that low-level vision and perhaps low-level perception

might involve sampling is particularly interesting in light of several
other recent findings suggesting that higher-level cognitive tasks,
like causal reasoning (41, 42) and decision-making (43), might
also involve some form of sampling. Sampling may turn out to be
a general algorithm for probabilistic inference in all domains.

Methods
Experimental Methods. The stimulus consisted of two superimposed square-
wave gratings, denoted α and β, moving at an angle of 160° between their
directions of motion behind a circular aperture (21) (Fig. 1A) with the
parameters specified in SI Methods. The gratings consisted of gray bars of

equal luminance presented on a white background. Where the gray bars
intersected, the luminance was set to that of the bars (as if one of the bars
was occluding the other bar). Observers were asked to continually report
their percept by holding down one of two designated keys [i.e., motion
direction (right or left) of the grating that they perceived as being behind
the other grating] and not to press any key if they were not certain. We
measured, in each trial, the accumulated time that either percept (i.e., depth
ordering) was dominant and computed the fraction of time that percept s =
{A,B} dominated as f(s) = (the cumulative time percept s was reported as
dominant)/(the total time that either of the percepts was reported as
dominant). Therefore, this fraction corresponds to the proportion of time
that percept s dominated. Percept A denotes the percept in which grating α
is behind grating β (and conversely, percept B). Fractions of dominance
shown in the figures correspond to averaged values of the fractions across
trials and observers, and error bars correspond to SEM across the population.

Mathematical Methods. The derivations of themultiplicative rule and stronger
cue take all rule and the descriptions of the energy, rate-based, and spiking
models are presented in SI Methods.
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SI Methods
Experimental Methods. Observers. A total of seven naïve observers
participated in the experiments: four in experiment 1 (observers
1–4; two females) and four in experiment 2 (observers 4–7; two
females). All observers had normal or corrected to normal vi-
sion. They were paid $10 per session for their participation, and
they provided informed consent according to the guidelines of
the University of Rochester Research Subjects Review Board.
Stimulus.The stimulus consisted of two superimposed square-wave
gratings, denoted α and β, moving at an angle of 160° between
their directions of motion (±80 from the vertical degree) behind
a circular aperture (1), which is shown schematically in Fig. 1A.
The luminance of the intersections between the gratings was
identical to that in the bars, and the values are specified below.
The duty cycle of the gratings was fixed at 0.2 (duty cycle = bar
width/wavelength). The diameter of the aperture was 14°. Lu-
minance outside the aperture was 9 cd/m2. A circular fixation
point (radius = 0.2°, luminance = 26 cd/m2) was overlaid on a
small homogeneous circular region (radius = 1°, luminance =
0.3 cd/m2) that covered the center of the display. Observers sat at
a distance 57 cm from the screen.

Experiment 1 (wavelength and speed cues). For the congruent
cues (C) condition, grating β had a fixed wavelength, λ = 3°, and
speed, v = 3°/s (neutral values), whereas the wavelength and
speed of grating α took one of the following values in each trial:
λ = 1.9°, 2.3°, and 3° and v = 3°, 6°, and 10°/s. For the in-
congruent cues (IC) condition, grating β had a fixed wavelength,
λ = 3° (neutral value), and its speed took the values v = 3°, 6°,
and 10°/s; grating α had a fixed speed, v = 3°/s (neutral value),
whereas its wavelength took the values λ=1.9°, 2.3°, and 3°. The
bars of the gratings had luminance 21 cd/m2 and were presented
on a white background (38 cd/m2).

Experiment 2 (wavelength and disparity cues). For the con-
gruent cues (C) condition, grating β had a fixed wavelength, λ =
3°, and speed, v = 6°/s (neutral values), whereas the wavelength
and (uncrossed) disparity of grating α took one of the following
values in each trial: λ = 1.9°, 2.3°, and 3° and d = 0, 2.4, and 4.8
arcmin. For the incongruent cues (IC) condition, grating β had a
fixed wavelength, λ = 3° (neutral value), whereas its (uncrossed)
disparity took the values d= 0, 2.4, and 4.8 arcmin; grating α had
a fixed speed, v = 3° (neutral value), whereas its wavelength took
the values λ = 1.9°, 2.3°, and 3°. Gratings were displayed in red
(5 cd/m2) over a black background (0.1 cd/m2).
Apparatus. The stimuli were generated by an Intel-based PC
running a C program and using the OpenGL graphics library, and
they were displayed on a 20-in cathode ray tube (CRT) screen.
The stimuli in experiment 1 were displayed at 75 Hz with a res-
olution of 1,280 × 1,024 pixels. Shutter stereo glasses were used
in experiment 2; the stimuli were displayed at 120 Hz (60 Hz per
eye) with a resolution of 1,152 × 864 pixels.
Experimental procedure.Observers sat in front of a computer screen
with their heads supported by a chinrest. They were asked to
continually report their percept by holding down one of two
designated keys [i.e., motion direction (right or left) of the grating
that they perceived as being behind the other grating]. Observers
were given passive viewing instructions (not to try to perceive one
possibility more than the other possibility and just to report the
spontaneous changes), and they were instructed not to press
either key if the percept was unclear. Observers fixated the central
spot during the whole 1-min duration of each trial. All combi-
nations of wavelength and speed or wavelength and disparity were
used in a randomized order, and each combination was repeated

four times. The global directions of motion of the two gratings
were randomized (up-right, up-left, down-right, and down-left;
always ±80° from the vertical and the global direction of motion
did not produce any significant effect). Observers ran a total of
36 trials of 1 min each in a single session; they were instructed to
take a 10- to 30-s rest between the trials. Subjects repeated the
same experiment in two or three sessions to equalize size of the
error bars across subjects.
Long presentations (∼1 min) were chosen over short pre-

sentations (∼1 s) (2), because the latter is known to have strong
saturating effects (confirmed by pilot experiments) (3), which
would have made it more difficult to find a large range of pa-
rameters for which the fractions of dominances were different
from both zero and one for all subjects.
Analysis. On each trial, we measured the accumulated time that
each percept (i.e., depth ordering) was dominant and computed
the fraction of time that percept s (s = {A,B}) dominated. This
fraction was denoted f(s) and defined as the ratio of the cumulative
time that percept s was reported as dominant over the total time
that either of the percepts was reported as dominant. Percept A
denotes the percept in which grating α is behind grating β (and
conversely, perceptB). This fraction is a number between zero and
one, with a value of 0.5 indicating that the two possible percepts
were equally likely. The fractions are first averaged across ori-
entations, because this variable was found to have no impact on the
fraction of dominance. Fractions of dominance shown in the fig-
ures correspond to averaged values of the fractions across ob-
servers, and error bars correspond to SEMs across the population
if not stated otherwise.

Predictions for the Fractions of Dominance Time.Multiplicative rule. In
the text, we have described the multiplicative rule (Eq. 1) and the
stronger cue takes all rule. A detailed derivation of the multipli-
cative rule is given here. In this section, fλsðsÞ ¼ f ðs jΔλ;ΔvÞ de-
notes the measured fraction of dominance of each stimulus
interpretation s (s = A or B corresponding to the two possible
depth orderings) when the cues take values Δλ and Δv (Δv should
be replaced by the differences in disparity in the second experi-
ment). According to the sampling hypothesis, this fraction is
proportional to the probability (or some power of it) of the per-
cept given the sensory evidence, that is, fλvðsÞ∝ pnðs jΔλ;ΔvÞ.
Note that this relationship does not assume any specific dynamics
for the sampling process of the posterior and also allows for
tempered sampling of the probability distribution when the power
n is different from one (4). Assuming that the values of the cues
are conditionally independent given s and using Bayes’ rule two
times, we obtain (S1)

fλvðsÞ∝ pnðs jΔλ;ΔvÞ
∝ pnðΔλ;Δv j sÞpnðsÞ
∝ pnðΔλ j sÞpnðΔv j sÞ pnðsÞ

∝
pnðs jΔλÞ pnðs jΔvÞ

pnðsÞ ; [S1]

where pðsÞ is the prior over depth orderings. Likewise, we can
define the fractions of dominance of percept s when we manip-
ulate individual cues while keeping the other cue constant. Let us
fix first the speed at Δv ¼ Δv0 (where Δv0 is an arbitrary refer-
ence point) and manipulate the relative wavelengths of the gra-
tings Δλ. Using expression S1 for this particular speed difference
leads to (S2)
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fλðsÞ∝ pnðs jΔλ;Δv0Þ

∝
pnðs jΔλÞ pnðs jΔv0Þ

pnðsÞ :
[S2]

Similarly, if we fix the relative wavelengths at Δλ ¼ Δλ0, we find
that the fraction of dominance for the speed difference Δv is
given by (Eq. S3)

fvðsÞ∝ pnðs jΔλ0;ΔvÞ

∝
pnðs jΔλ0Þpnðs jΔvÞ

pnðsÞ :
[S3]

We can now insert pnðs jΔλÞ from Eq. S2 and pnðs jΔvÞ from Eq.
S3 into Eq. S1 to obtain (Eq. S4)

f λvðsÞ ∝ fλðsÞ× fvðsÞ× pnðsÞ
pnðs jΔλ0Þpnðs jΔv0Þ: [S4]

Finally, we note that if we set the reference differences in speed
and wavelength, Δv0 and Δλ0, to zero (i.e., their neutral values),
then pðsÞ; pðs jΔv0 ¼ 0Þ; pðs jΔλ0 ¼ 0Þ should all be equal to one-
half for symmetry reasons, which leads to (Eq. S5)

fλvðsÞ∝ fλðsÞ× fvðsÞ: [S5]

After normalized, this equation is equivalent to the multiplicative
rule (Eq. 1). This relation holds whether subjects are sampling
from posterior distributions on depth or from posterior dis-
tributions raised to an arbitrary power n. Therefore, our experi-
mental results are consistent with a sampling process of an
underlying posterior distribution over depth orderings raised to an
arbitrary power. Our technique does not specify the power to
which the probability has been raised, because a probability raised
to a power behaves exactly like any other probability distribution
(i.e., it gets combined according to the rules of probability).
Combination rule over continuous variables. In the previous section, we
assumed that subjects estimate depth ordering, which is to say that
they infer the value of a binary variable from the sensory in-
formation. It is possible, however, that subjects first compute a
posterior distribution over the depth of the gratings, which is
a continuous variable, and then recover a probability distribution
over depth ordering through integration. This approach does not
yield the same multiplicative rule as before. Instead, as we show
below, we obtain (Eq. S6)

fλv ¼ ΦðΦ− 1ðfλÞ þΦ− 1ðfvÞÞ; [S6]

where Φ is the cumulative of a normal distribution and Φ−1 is its
inverse. Although this rule looks quite different from the multi-
plicative rule, it leads to nearly identical predictions (Fig. S4).
To derive this rule, we assume that (i) on any given trial, the

subject has available noisy sensory estimates of Δλ, Δv, Δbλ, and
Δbv, (ii) the likelihood functions on the difference in depth as-
sociated with each of the sensory measurements is Gaussian with
means ẑλ and ẑv and variances σ2λ and σ2v , and (iii) the prior on
the difference in depth, z, is uniform. The posterior density
function on z is then Gaussian with mean wλẑλ þ wvẑv and variance
w2
λσ2λ þ w2

vσ2v , where wλ ¼ Rλ=ðRλ þ RvÞ, wv ¼ Rv=ðRλ þ RvÞ, and
the Ri terms represent the reliabilities of the two cues given by
Ri ¼ 1=σ2i . For an observer that samples from this posterior, the
frequency of seeing a difference in depth greater than zero is given
by (Eq. S7)

fλ̂ v̂ ¼ pðz> 0 jΔbλ;ΔbvÞ ¼ Φ
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rλ þ Rv

p ðRλẑλ þ RvẑvÞ
�
: [S7]

We do not have this frequency available psychophysically, be-
cause it is conditioned on particular noisy sensory estimates of Δλ
and Δv. Rather, we have frequencies averaged across trials; thus,
we have available the average frequency with which subjects
report one percept over another from trial to trial. To derive an
expression, we replace the sensory signals Δbλ and Δbv with
a representation of the depth difference indicated by the sensory
signals, bz ¼ wλ ẑλ þ wv ẑv, where ẑλ and ẑv are the means of the
likelihoods associated with Δbλ and Δbv, respectively, and the
weights are as described above. Noticing that we can write
pðz> 0 jΔbλ;ΔbvÞ as pðz> 0 jbzÞ, the average frequency of a positive
depth difference interpretation, fλv, is given by (Eq. S8)

fλv ¼
ð∞
−∞

pðz> 0 jbzÞ pðbz j zλ; zvÞdbz ¼ ð∞
0

ð∞
−∞

pðz j bzÞpðbz j zλ; zvÞdzdbz;
[S8]

where pðbz j zλ; zvÞ represents the trial to trial distribution of depth
differences derived from the values of the two cues. This distri-
bution is Gaussian with mean wλ zλ þ wv zv and variance
w2
λσ2λ þ w2

vσ2v with the weights as defined above. We can, there-
fore, rewrite Eq. S8 as (Eq. S9)

fλv ¼
ð∞
0

ð∞
−∞

f
�
z−bz; 0; 1

Rλ þ Rv

�
f
�bz;wλzλ þ wvzv;

1
Rλ þ Rv

�
dzdbz;
[S9]

where f ðz; μ; σ2Þ is a Gaussian with mean μ and variance σ2. The
inner integral is simply a convolution of two Gaussians with the
same variance, resulting in (Eq. S10)

fλv ¼
ð∞
0

f
�
z;wλ zλ þ wv zv;

2
Rλ þ Rv

�
dz

¼ Φ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ðRλ þ RvÞ

s
ðRλ zλ þ Rv zvÞ

!
: [S10]

Note that the cues are neutral when Δλ = 0 and Δv = 0, because
then, fλv ¼ Φð0Þ ¼ 1=2. This scenario corresponds to a situation
in which both zλ ¼ 0 and zv ¼ 0. When the speed cue is neutral,
zv ¼ 0, and the percept corresponding to z > 0 will be reported

with a frequency fλ ¼ Φ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ðRλ þ RvÞ

s
ðRλzλÞ

!
. When the

wavelength cue is neutral, zλ ¼ 0, and the percept corresponding
to z > 0 will be reported with a frequency

fv ¼ Φ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ðRλ þ RvÞ

s
ðRvzvÞ

!
. Thus, we can rewrite Eq. S10 as

(Eq. S11)
fλv ¼ ΦðΦ− 1ðfλÞ þΦ− 1ðfvÞÞ: [S11]

The above derivation assumes that the sensory signals are cor-
rupted by a constant noise term on each trial. The same results
hold if we assume time-varying noise within a trial. Furthermore,
Eq. S11 is valid even when the observer has inaccurate estimates
of the cue variance, because it only changes the weights and
variances of the Gaussian inside the integral in Eq. S10. In this
case, Eq. S9 becomes (Eq. S12)
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fλv ¼
ð∞
0

ð∞
−∞

f ðz−bz; 0; σ2z Þ f ðbz;wλ zλ þ wv zv;wλσ2λ þ wλσ2vÞdzdbz
¼ Φ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2z þ w2

λσ2λ þ w2
vσ2v

q ðwλ zλ þ wv zvÞ

0B@
1CA;

[S12]

where σ2z is the variance associated with the posterior density func-
tion on z computed using the incorrect estimates of signal variance.
The second term in the integral contains the true signal variances,
because it represents the variability in the depth difference sig-
naled by different noisy measurements of wavelength and speed.
This result is analogous to the invariance of the multiplicative rule
to the power-law transformations of the posterior probabilities in
the discrete case—incorrect estimates of cue variance are equiva-
lent to raising the Gaussian likelihood functions to arbitrary
powers. The implication of this result is that the multiplicative rule
and Eq. S11 do not require that the brain combines cues optimally
but simply that it uses a weighted average.

Attractor Neural Networks. Energy model.Wemodel the dynamics of
two populations, A and B, whose states are described by their
firing rates rA and rB, respectively. In the energy model, the vari-
able difference between firing rates, r = rA − rB, obeys (Eq. S13)

τ
d
dt

r ¼ − 4rðr2 − 1Þ þ gðIλ; IvÞ þ nðtÞ [S13]

(Eq. 2), where n(t) is as an Ornstein–Uhlenbeck process (5) with
zero mean and deviation σ (σ = 1.2s−1/2) (Eq. S14):

d
dt

ni ¼ −
ni
τs
þ σ

ffiffiffiffi
2
τs

s
ξiðtÞ: [S14]

Here, τs = 100 ms, and ξi(t) is a white noise process with zero
mean and unit variance, hξiðtÞξiðt’Þi ¼ δðt− t’Þ, where δðt− t’Þ is
the δ-function. The input-dependent drift takes the form
gðIλ; IvÞ ¼ Iλ þ Iv þ εðIλ I2v þ I2v IλÞ, where ε weights the strength
of the nonlinearity and Iλ and Iv are the currents supporting
dominance of population A vs. population B from the wave-
length and speed cues, respectively. This function corresponds
to a simple expansion in powers of the currents of an odd
function up to third order. Including the pure third-order terms
I3λ and I3v does not qualitatively change the results, because their
effects on the fractions of dominance can be reabsorbed in the
linear terms.
Eq. 3 can be derived analytically from the energy model by

computing the mean dominance duration of each percept. This
quantity corresponds to the mean escape time from one of the
potential wells. As is well-known from the theory of first-passage
times, the mean escape time from a well depends exponentially
on its energy barrier (i.e., vertical distance from the minimum to
the local maximum) for small noise variances (5, 6), the case of
interest in our problem. Therefore, the fraction of dominance of
percept A, which is proportional to its mean dominance dura-
tion, is itself proportional to the exponential of the energy bar-
rier (S15),

f ∝ TðAÞ ∝ eðE0þΔEðAÞÞ=σ2eff ∝ eΔEðAÞ=σ
2
eff ; [S15]

where σ2eff is the effective noise in the system, E0 is the energy
barrier when the input currents are equal to zero (i.e., Iλ = Is =
0), and ΔEðAÞ is the change in the energy barrier induced by

nonzero currents. Eq. 3 can be obtained from expression S15 by
noting that, for the linear model, the change of the energy bar-
rier is linear in the sum of the currents, ΔEðAÞ ¼ cðIλ þ IvÞ, with
c being a constant close to one for small current values.
Rate-based neural model. In the rate-based network, the firing rate ri
for each population i (i = A,B) follows the coupled differential
equations (Eqs. S16 and S17)

τ
d
dt

rA ¼ − rA þ RðwexcrA −winhdBrB þ I0 þ rrelayðIλ; IvÞ þ nAÞ

τ
d
dt

rB ¼ − rB þ RðwexcrB −winhdArA þ I0 − rrelayðIλ; IvÞ þ nBÞ
;

[S16 and S17]

where I0 = 0.15 is a constant background current. The rate of the
relay population is (Eq. S18)

rrelay ðIλ; IvÞ ¼ ð1− εÞðIλ þ IvÞ þ εCðIλ þ IvÞ3; [S18]

where the parameter ε specifies the degree of nonlinearity in the
inputs currents (in Figs. 5 and 6, ε was set to zero for the linear
relay population and set to one for the nonlinear relay popula-
tion) and C = 100 is a normalization constant ensuring that the
two terms in the sum have roughly the same magnitude for the
values of the currents used in the stimulations (range between
0 and 0.1). The choice of the cubic nonlinearity is consistent with
the experimentally observed input to rate transfer functions in
primary visual cortex (7).
The above equations and the architecture described in Fig. 5A

correspond to the case in which the sum of the currents is positive;
when the sum is negative, the firing rate of the relay population is
zero (i.e., the sum of the input currents are rectified). We assume
that there is an additional relay population that is active when the
sum of the currents is negative and delivers inputs to the network
with a firing rate equal to − rrelayðIλ; IvÞ, which is positive. The
connectivity of this additional relay population was assumed to be
the reverse of the one shown in Fig. 5A. The firing rates of the
populations relax to their steady-state value with time constant
τ = 10 ms. The function R(x) is the input current to firing rate
transfer function taken to be a sigmoid RðxÞ ¼ 1=ð1þ e− x=kÞ, with
k= 0.2. Recurrent excitatory connections in each population with
strength wexc = 1 provide positive feedback. Cross-inhibition be-
tween the population has strength winh = 2 and generates winner
take all behavior (i.e., only one population has large activity at any
time). Synaptic depression is modeled as a multiplicative term, di,
that lowers the effective inhibition exerted from one population

to the competing population and follows the equation τd
d
dt
di ¼

1− di − uridi, where τd = 2 s is the time scale of depression and
u determines how quickly vesicles are depleted by presynaptic
activity (u = 0.6) (8, 9). The populations receive independent
fluctuating currents, nA(t) and nB(t), modeled as in Eq. S14 with
intensity σ = 0.24s−1/2.
Fits from the rate-based neuronal model to experimental data. The rate-
based model generates predictions about the fractions of domi-
nance for each percept that one should observe when the two cues
are nonneutral given the fractions observed when only one cue
was nonneutral. The blue dots in Figs. 2D, 3D, and 6A show that,
when the relay population has a linear activation function, the
network generates fractions of dominance for the two non-
neutral cues condition that matches the multiplicative rule
(Eq. 1), whereas the orange dots in Figs. 2D, 3D, and 6A show
that, when the relay population was nonlinear, the generated
fractions did not follow the multiplicative rule.
To generate the predictions from the rate-based model, we first

fitted the single nonneutral cue conditions as follows. In the linear
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version of the system, the fractions of dominance of percept A
follow a sigmoid function of the current (Fig. 6B, blue lines), that
was fitted by a sigmoid (logistic) function (Fig. 6B, red line)
(Eq. S19)

fiðs ¼ AÞ ¼ 1

1þ e− 2Ii=σ2best
; [S19]

where σ2best is the best parameter estimate and Ii is the current.
For each data point in the experimental set, we found the cor-
responding current Ii that gave the observed fraction fi in the
single nonneutral cue condition (i ¼ fλ; vg). Finally, the predic-
tion of the fraction of dominance that should be observed when
the two cues were nonneutral was generated by using the pre-
viously fitted sigmoid functions now applied to the sum of the
currents, that is (Eq. S20),

fλvðs ¼ AÞ ¼ 1

1þ e− 2ðIλþIvÞ=σ2best
: [S20]

It is easy to show that this prediction is equivalent to applying the
multiplicative rule directly to the fractions of dominance in the
single nonneutral cue condition.
For the nonlinear version of the network, the fit was as follows;

instead of using a sigmoid function, we fitted the fractions of
dominance in the single nonneutral cue condition in Fig. 6B
(orange lines) to the function (Eq. S21)

fiðs ¼ AÞ ¼ 1

1þ e− 2I3i =σ
2
best

: [S21]

From this fit, we can compute again the corresponding current
Ii that gives the observed fraction fi in the single nonneutral cue
condition. Finally, we generated predictions for the fraction in the
two nonneutral cues condition from this model by using (Eq. S22)

fλvðs ¼ AÞ ¼ 1

1þ e− 2ðI3λþI3v Þ=σ2best
: [S22]

This equation led to predicted fractions of dominance that
substantially deviated from the multiplicative rule and hence,
from the data (Figs. 2D and 3D, orange dots).
Spiking attractor network. Results. We also built a network of in-
tegrate and fire neurons that generates fractions of dominance that
follow the rules of probabilistic inference (Fig. S3). The architec-
ture of this network is similar to that described in Fig. 5A but with
the additional ingredient that there is a population of inhibitory
neurons associated with each excitatory population (Fig. S3A). Fig.
S3B shows a time series of dominances of the two excitatory
populations (Fig. S3B Upper displays population firing rates) and
the raster plots (Fig. S3B Lower) indicating the spike timings of
every neuron in the network (population A runs from neurons 1 to
50, with the last 10 neurons corresponding to the A inhibitory
population, whereas population B runs from neurons 51 to 100,
with the last 10 neurons corresponding to the inhibitory sub-
population). The network generates standard stochastic behavior
with a distribution of dominance durations that has a coefficient of
variation of 0.54 (Fig. S3C). When the spiking network receives
inputs from a linear relay population, the network generates
fractions of dominance that follow the multiplicative rule (Fig.
S3D, blue dots), whereas when the relay population is nonlinear,
the fractions do not combine multiplicatively (Fig. S3D, orange
dots). As required for sampling, the fractions are well-described by
a sigmoid function when the relay population is linear but not
when it is nonlinear (Fig. S3E).

Network description. Each neuronal population contains n =
50 leaky integrate and fire neuron models (20% of them are
inhibitory and the remaining are excitatory). Coupling is with
instantaneous current injections and all to all connectivity (each
neuron receives connections from all neurons in a presynaptic
population). The voltage below the spiking threshold for the
excitatory neurons in the competing populations obeys (Eq. S23)

d
dt

V ðtÞ ¼ − IsynðtÞ− IadapðtÞ: [S23]

A neuron emits a spike when the voltage reaches the threshold
Vth ¼ 1 (arbitrary units), after which the voltage is reset to Vreset ¼
0. The model is endowed with a reflecting boundary at Vbound ¼
− 1 to avoid large negative excursions of the voltage. IsynðtÞ is the
total synaptic current delivered to a neuron. IadapðtÞ is a slow ad-
aptation current whose value is increased byΔIadap ¼ 0:1 with each
evoked spike and decays to zero exponentially with time constant
τadap ¼ 1s. Equations for the inhibitory populations are the same
as that described above.
The synaptic currents to the excitatory (E) and inhibitory

(I) subpopulations in population A are Isyn;EðtÞ ¼ Irec;AðtÞþ
IInh;BðtÞ þ Iext;A þ IbackðtÞ and Isyn; IðtÞ ¼ Iexc;AðtÞ þ IbackðtÞ, re-
spectively. Similar equations hold for population B. We assume
that spikes generated in the network lead to δ-function currents
in the postsynaptic neurons. The recurrent input generated by
subpopulation A is Irec;AðtÞ ¼ JEE ∑

i; j
δðt− t ji Þ, where the index i

runs over the neurons of subpopulation E of A, index j indicates
spike timing, and JEE ¼ 0:012. Inhibition into subpopulation E of
A is generated by the I subpopulation of B, leading to
IInh;BðtÞ ¼ JEI ∑

i; j
δðt− t ji Þ, where now i runs over the neurons of

subpopulation I of B with JEI ¼ − 0:07. This (strong) inhibition is
central to create the bistability in the network. Subpopulation I
of A receives excitatory drive from the subpopulation E and
Iexc;AðtÞ ¼ JIE ∑

i; j
δðt− t ji Þ with JIE ¼ 0:05.

External inputs to the E subpopulations come from the relay
population and a constant external background (Fig. 5A, rate-
based model and Fig. S3A), and they are modeled as constant
excitatory currents (Eqs. S24 and S25)

Iext;A ¼ I0 þ ð1− εÞðIλ þ IvÞ þ εCðIλ þ IvÞ3
Iext;B ¼ I0 − ð1− εÞðIλ þ IvÞ− εCðIλ þ IvÞ3

; [S24 and S25]

respectively, for populations A and B. As in the rate-based
model, the parameter ε specifies the degree of nonlinearity in
the inputs currents (in Fig. S3, ε = 0 was chosen for the linear
relay population and ε = 1 was chosen for the nonlinear relay
population), and C = 1/3s2 is a constant ensuring that the two
terms in the sum have roughly the same magnitude for the values
of the currents used in the stimulations (range between 0 and 1.5
s−1). The choice of the cubic nonlinearity is consistent with the
experimentally observed input to rate transfer functions in pri-
mary visual cortex (7). However, it should be noted that the
particular choice of a cubic polynomial is not critical for the
results shown in Fig. S3; qualitatively similar results were ob-
tained with power between two and four. The value of the back-
ground current was I0 ¼ 10s− 1. The connectivity pattern of the
relay population to the network was identical to that in the rate-
based network.
Each E neuron received an independent source of noisy cur-

rent modeled as Gaussian white noise IbackðtÞ ¼ σηðtÞ, where ηðtÞ
is white noise with unit variance and σ ¼ 3s− 1=2. Each I neuron
also received a negative mean current such that IbackðtÞ ¼
− μþ σηðtÞ with μ ¼ 10s− 1.
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The spiking network, as well as the rate-based network, is in the
so-called noise-dominated regimen (10), where noise is the cause
of the alternations (i.e., when the noise is completely removed
from the network, the system does not oscillate and remains
trapped in one of the attractors because of the weak adaptation
current present in the model).

Numerical Procedures for the Neural Network Models. The dynam-
ical equations for the energy and neural network models were
integrated using Euler’s method with time step δt = 0.1 ms. A
shorter integration time step did not produce appreciable dif-
ferences in any of the results that we obtained. The dominance
durations for each percept in the energy model are defined by
the amount of time in which the variable r is below (or above)
r = 0. For the neural network model, a transition occurs when
the firing rate of one population becomes larger (or smaller)
than the firing rate of the other population. The energy, rate-
based, and spiking neuronal models are typically run for 2,000 s
(model time), which is close to the time run by the subjects in the
experiments per condition. Means in all of the plots are com-
puted from the time series generated with these long simu-
lations, and error bars correspond to the SEM. We used custom
C code to simulate the models (including a random generator for
white noise that generated long nonrepetitive series) and Matlab
to analyze and plot the data.

Sampling and Optimal Cue Combination for the Neural Network
Models. In this section, we show that the neural network mod-
els with linear inputs sample the probability distribution defined
in the inputs with a pure power law. In the text and SI Methods,
Attractor Neural Networks, Energy model, we have shown that, in
the energy model, the fraction of dominance of one percept is
a sigmoidal function of the sum of the currents arising from
independent cues (Eq. 3) (Eq. S26)

f ðs ¼ AÞ ¼ 1

1þ e− 2ðI1þI2Þ=σ2eff
; [S26]

where σ2eff is the effective noise generated by the network and I1
and I2 are the currents corresponding to cues 1 and 2 (e.g., wave-
length and speed cues in the previous sections). Through numer-
ical simulations of the neuronal network model, we have shown
that the fraction of dominance is also a sigmoid function of the
sum of the currents (Fig. 6B). Therefore, Eq. S26 is valid in gen-
eral for attractor networks (i.e., noise-driven networks with attrac-
tor states), where σ2eff depends on the details of the network.
To determine whether attractor networks sample from the

posterior probability distribution over s encoded by the input
current, we need to first specify how the input currents encode
probability distributions. We show next that, when the inputs are
probabilistic population codes (a particular type of neural code
for encoding probability distributions), the posterior distribution
over s given the input current is also a sigmoid of the input
current, in which case the fraction of dominance f ðs ¼ AÞ is in-
deed proportional to a power of the posterior distribution over s.
In other words, the network would effectively sample the pos-
terior distribution (raised to some arbitrary power).
To show this, we assume that for each cue i (i = 1,2), there are

two presynaptic neural populations, one preferring stimulus in-
terpretation A and the other preferring B. Thus, there are a total
of four presynaptic populations. The presynaptic population A
associated with cue i sends excitatory connections to the relay
population (Fig. 5A and Fig. S3A) that feeds the attractor neural
network while sending inhibitory connections to the relay pop-
ulation. The presynaptic population B has the reversed connec-
tivity pattern.

In this section, we use the concept of probabilistic population
codes (11, 12) (PPCs) to derive the posterior distribution over
depth ordering given the presynaptic input, denoted
pðs j r→1

A; r
→1
B; r

→2
A; r

→2
BÞ, where s = {A,B} are the possible percepts

and r→i
A; r

→i
B are the firing responses of input populations A and B

selective to cues i = {1,2}. The information present in the
populations is combined optimally only if the posterior proba-
bility density function (pdf) over the stimulus parameters for each
population i satisfies (assuming an uniform prior over s) (S27)

pðs j r→1
A; r

→1
B; r

→2
A; r

→2
BÞ ∝ pðs j r→1

A; r
→1
BÞpðs j r→2

A; r
→2

BÞ: [S27]

The distributions pðs j r→ i
A; r

→ i
BÞ can be expressed as (S28)

pðs j r→i
A; r

→i
BÞ ∝ pðr→i

A; r
→i
B j sÞpðsÞ; [S28]

where pðr→i
A; r

→i
B j sÞ is the pdf that population i generates the

activity patterns r→i
A; r

→i
B given that the stimulus is s and pðsÞ is

the a priori pdf over s and ci. The a priori distribution is taken to
be independent of s (that is, uniform in s). A uniform prior over s
is indeed consistent with the fact that our subjects did not favor
any particular depth ordering in our experimental results.
We assume that pðr→i

A; r
→i
B j sÞ belongs to the family of Poisson-

like pdfs with sufficient linear statistics (Eq. S29),

pðr→i
A; r

→i
B j sÞ ¼ Ψðr→ i

A; r
→ i

BÞ exp ðh→AðsÞ · r→A þ h
→

BðsÞ · r→BÞ; [S29]

where Ψ is an arbitrary function that does not depend on s. This
assumption is known to provide a good approximation to neural
variability in vivo (11). We also assume that the kernels in s obey
the symmetry condition Δh

→ ¼ h
→
AðAÞ− h

→
AðBÞ ¼ h

→
BðBÞ− h

→
BðAÞ.

Finally, it is easy to show using expressions S27 and S28 and
Eq. S29 that the posterior distribution over s is a sigmoid func-
tion of the presynaptic patterns of activity (Eq. S30)

pðs ¼ A j r→1
A; r

→1
B; r

→2
A; r

→2
BÞ ¼

1

1þ e−Δh
→
· ðr→A − r→BÞ

; [S30]

where we have defined r→s ¼ r→1
s þ r→2

s . Note, first, that the pro-
bability over s depends only on the difference of the activities
of populations A and B summed over the available cues and
second, that it does not depend explicitly on the values taken
by the cues.
Comparing Eqs. S26 and S30, it is clear that the fraction of

dominance generated by an attractor network can be equal to the
posterior distribution over s as long as we equate the input current
in Eq. S26 to the proper combination of the probabilistic pop-
ulation codes r→1

A; r
→1
B; r

→2
A; r

→2
B. Thus, if we set I1 þ I2 ¼ wΔh

→
·

ðr→A − r→BÞ, where w measures the strength of the feed-forward
connections, and use Eq. S30, then Eq. S26 becomes (Eq. S31)

f ðs ¼ AÞ ¼ 1

1þ e− 2wΔ
→
h · ð→rA −

→
rBÞ=σ2eff

∝ ½ pðs ¼ Aj r!1
A; r
!1

B; r
!2

A; r
!2

BÞ�
2w
σ2eff : [S31]

Therefore, the attractor network generates a dynamic that is
indistinguishable from a sampling process of the probability
distribution defined in Eq. S30 raised to a power. By appropri-
ately setting the value of w, it is possible to obtain any desired
tempered sampling of the probability distribution. Note that this
result is true only under the condition that the variability of
neuronal activity lies in the exponential family with linear suffi-
cient statistics (Eq. S29) as closely observed experimentally.
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Fig. S1. (A) Experimental vs. predicted fractions of dominance when using wavelength and speed. Each color corresponds to one subject. (B) Experimental vs.
predicted fractions of dominance when using wavelength and disparity.

0 0.5 1
0

10

20

30

fraction of dominance

m
ea

n 
du

ra
tio

n 
(s

)

Fig. S2. Mean dominance duration of a percept as a function of the fraction of dominance of the percept for the experimental data averaged across subjects
(blue) and for the model with nonlinear activation function (red).
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Fig. S3. Sampling in a spiking attractor network. (A) Architecture of the network. Two excitatory populations that receive inputs from a relay population
compete for dominance through mutual inhibition mediated by local inhibitory networks. (B) Excitatory population firing rates as a function of time for the
neural network model (Upper) and raster plot including all neurons in the network (Lower). Red, neurons encoding percept A; green, neurons encoding
percept B. (C) The distribution of dominance durations from the model in the neutral condition (red) and from the pooled data across subjects (blue) for the
wavelength-speed experiment in the neutral condition (n = 320). Time has been normalized so that the mean of the distributions is one. Both distributions are
close to each other and have a coefficient of variations close to 0.6. Because the distribution from the model corresponds to the case in which the cues are
neutral, it is the same regardless of whether the activation function of the relay unit is linear or nonlinear. (D) Predicted fractions using the multiplicative rule
vs. empirical fractions of dominance generated by the neural network with linear (blue dots) and nonlinear (orange dots) relay population. (E) The fractions of
dominance are well-approximated by a sigmoid function of the sum of input currents to the relay population when the relay population is linear (blue) but not
when it is nonlinear (orange). Red curve corresponds to the best sigmoid fit in the linear case.

eq. S6

Fig. S4. Comparison between the multiplicative rule (Eq. 1) and its continuous version (Eq. S6), showing that the two expressions lead to nearly identical
predictions. In both cases, fλv is plotted as a function of f = fλ = fv.
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