## Retinotopy Tutorial

## What defines a visual area?

## Visual areas are defined by FACTs!

# (F)unction (A)rchitectonics (C)onnections (T)opography 

## (F)unction (A)rchitectonics (C)onnections (T)opography

What technical development allowed for the topographic mapping of primary visual cortex?



Mosin-Nagant Model 91 military rifle

## Tatsuji Inouye



Tatsuji Inouye (1909) W. Engelmann (Translated from German by Glickstein and Fahle)


Holmes (1918) British Journal of Opthalmology



Modern reconstruction of Inouye's map by Jonathan Horton

## (F)unction (A)rchitectonics (C)onnections (T)opography



Felleman \& Van Essen (199I) Cerebral Cortex I:I-47

## Ascending, descending and lateral connections



Felleman \& Van Essen (I99I) Cerebral Cortex I:I-47


Felleman \& Van Essen (1991) Cerebral Cortex I:I-47

## (F)unction (A)rchitectonics (C)onnections (T)opography

## Lateral



## Medial



## Brodmann I909

## Stria of Gennari (I782)



Andrews, Halpren \& Purves(I997) JN 17:2859


Hinds, Rajendran, Polimeni, Augustinack, Wiggins, Wald, Rosas, Potthast, Schwartz, Fischl (2008) Neuroimage I585-99

## (F)unction (A)rchitectonics (C)onnections (T)opography

## Area MT



Tootell, Reppas, Kwong, Malach, Born, Brady, Rosen, Belliveau (I995) JN I5:32|5-3230

3a. Faces > Objects


Kanwisher, McDermott \& Chun (I997) JN I7:4302-I I

## Anatomical versus physiological localization of visual areas

## Talairach coordinates - AC/PC



## Location of VI in stereotaxic coordinates is extremely variable



Amunts, Malikovic, Mholberg, Schormann \& Zilles (2000) Neuroimage I I:66-84

## "Surface based alignment" may help



Hinds, Rajendran, Polimeni, Augustinack, Wiggins, Wald, Rosas, Potthast, Schwartz, Fischl (2008) Neuroimage I585-99

## Sulci/gyri on the medial surface of the brain



## Sulci/gyri on the lateral surface



Nickname:
AnG angular gyrus cerebellum frontal pole inferior frontal gyrus inferior occipital gyrus inferior temporal gyrus lateral occipital gyrus middle frontal gyrus middle temporal gyrus orbital gyrus pons
pars opercularis (IFG) pars orbitalis (IFG) pars triangularis (IFG) postcentral gyrus precentral gyrus superior frontal gyrus superior occipital gyrus superior parietal lobe superior temporal gyrus supramarginal gyrus temporal pole

Lateral Sulci
central sulcus (Rolandic) horizontal ramus inferior frontal sulcus inferior occipital sulcus intraparietal sulcus lateral fissure (Sylvian) lateral occipital sulcus lunate sulcus parieto-occipital fissure postcentral sulcus precentral sulcus superior frontal sulcus transoccipital sulcus vertical ramus

PL paracentral lobule precuneus
q quadrigeminal plate

## Sulci can be variable!!



Lateral surface of occipital lobe acc accessory lateral occipital sulci AOS Anterior occipital sulcus
IOS Inferior occipital sulcus
LOS Lateral occipital sulcus
LuS Lunate sulcus
TOS Transverse occipital sulcus
laria \& Petrides (2007) JCN 501:243-59

## Flat maps



Schluppeck, Glimcher \& Heeger (2005) JNP 94: 1372-84


Sincich, Adams \& Horton (2003) Vis Neurosci 20: 663-86

## Measuring topography with fMRI

## Travelling wave stimulus



Engel, Rumelhart, Wandell, Lee, Glover, Chichilnisky, Shadlen (I994) Nature 369:525




## Note: VP is V3v

Sereno, Dale, Reppas, Kwong, Belliveau, Brady, Rosen \& Tootell (I995) Science 268:889-93


DeYoe, Carman, Bandettini, Glickman, Wieser, Cox, Miller \& Neitz (1996) PNAS 92:2382-86


Engel, Glover \& Wandell (I997) Cereb Cortex 7: 181-192

## Topographic areas in the intraparietal sulcus




Right cortex


Larsson \& Heeger (2006) JN 26:|3|28-42


Sereno, Pitzalis \& Martinez (200I) Science 294:I350-4


Sereno, Pitzalis \& Martinez (200I) Science 294:I350-4


Schluppeck, Glimcher \& Heeger (2005) JNP 94:I372-84


Swisher, Halko, Merabet, McMains \& Somers (2007) JN 27:5326-37


Sereno \& Huang (2006) NN 9:I337-43


Sereno \& Huang (2006) NN 9:1337-43

## Spatially allocating attention alone is enough to make topographic maps



Brefczynski \& DeYoe (1999) NN 2:370-4


Silver, Ress \& Heeger (2005) JNP 94: |358-7 I

## Lateral occipital areas



Right cortex


Larsson \& Heeger (2006) JN 26:|3|28-42


Larsson \& Heeger (2006) JN 26: 3 | $28-42$

## Relationship to function

## Instead of "visual areas" we should say "visual field maps"



Larsson \& Heeger (2006) JN 26: I3 | $28-42$

## Ventral occipital areas




Larsson \& Heeger (2006) JN 26:|3|28-42


Brewer, Liu, Wade \& Wandell (2005) Nat Neurosci 8:I I02-9

## Meta-organization of visual areas

## Dorsal and ventral visual streams What \& where Action \& perception



Ungerleider \& Mishkin (|982)
Goodale \& Milner (I 992) TINS I 5:20-25

## Visual fields clustered around foveal representations



Brewer, Liu, Wade \& Wandell (2005) Nat Neurosci 8:I I 02-9

## MT and MST



Huk, Dougherty \& Heeger (2002) JN 22:7 I 95-205


Huk, Dougherty \& Heeger (2002) JN 22:7 I95-205

## Area V6 (widefield retinotopy)



Pitzalis, Galletti, Huang, Patria, Committeri, Galati, Fattori \& Sereno (2006) JN 26:7962-7973

## Controversies!

Were is dorsal V4

## V4d topologue



Tootell \& Hadjjkhani (200I) Cerebral Cortex 4:298-3 I I


Brewer, Liu, Wade \& Wandell (2005) Nat Neurosci 8: I I 02-9


Hansen, Kay \& Gallant (2007) JN 27: I |896-I |9| |


Hansen, Kay \& Gallant (2007) JN 27:| |896-| |9| |

# Controversies! <br> Reference frames of topographic maps 

## Retinal or space centered?



d'Avossa, Tosetti, Crespi, Biagi, Burr \& Morrone (2007) Nat Neurosci, I0:249-55


Gardner, Merriam, Movshon, Heeger (2008) JN 9:3988-99

## Homology between human and monkey areas

## "Homology" is the wrong word!!!!

## The concept of homology applied to extrastriate cortical areas

Marcello G Rosa, Professor
Monash University, Melboume, VIC 3800 , Australia

Send letter to journal
Re: The concept of
homology apolied to extrastriate cortical aroas

Email Marcello G Rosa

One of the key findings of the paper by Larsson and Heeger is that the human lateral occipital cortex contains representation(s) of the central portion of the upper visual field in the dorsolateral cortex caudal to MT, and rostral to "dorsal V3". These representations would seem to occupy part of the region that corresponds to dorsal (lower quadrant) V4 in the macaque. Based on the fact that the visuotopic organization of this part of the brain appears to be different in humans and monkeys, the authors proceed to suggest the existence of two new visual areas of the human cortex (LO1 and LO2), which would have no simian homologues. This conclusion is unwarranted, as it reflects an erroneous expectation that homologue structures will look identical in different species.

Homologous structures in nature can, and often are, quite different. The concept of homology is based not on morphology or function, but rather on a common evolutionary origin (i.e., whether or not the structure in question was present in a common ancestor). This common origin is, in turn, often (if not always) reflected in a common embryological origin.

Larsson and Heeger report that the lateral occipital areas LO1 and LO2 show marked interindividual variability, with fewer than half of the examined hemispheres (14/30) showing a complete representation of polar angles in the upper quadrant, and a substantial proportion of the sample ( $7 / 30$ ) showing no clear topographic order assessable via fMRI. This high degree of variability (which may also explain conflicting reports from other laboratories) is compatible with a developmental model based on activity-dependent formation of topographic maps, which would translate into multistable solutions for adult visual topography. We have proposed one such model, which specifically predicts a high degree of variability in topographic organization of the region of "fourth visual complex" as a result of its markedly delayed maturation relative to areas such as V1 and MT (Rosa and Tweedale, 2005). This variability is expected not only across primate species, but also between individuals of the same species. Critically, the final configuration of the maps is linked not only to phylogeny, but is the result of an epigenetic process that is strongly influenced by overall brain size (hence, length of corticogenesis). For example, New World and Old World monkeys of similar size have similar visual topographies in this region. Given that a pool of cells with similar embryological identity may form different maps in different individuals and/ or species, visuotopy alone constitutes a weak criterion for establishing homologies in high-order (or late-maturing) visual areas.
Whether the observed variability ultimately proves to be the result of variable visual topographies within areas, or variable topological relationships between areas, the rich data set and excellent analysis provided by Larsson and Heeger will provide a strong basis for further exploration of this question.

Reference: Rosa MGP, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc Lond B Biol Sci. 360: 665-691.

\section*{homology <br> Pronunciation: \hō-'mä-lə-jē, hə-\}

Function: noun
Inflected Form(s): plural ho•mol•o.gies
Date: circa 1656
2 a: likeness in structure between parts of different organisms (as the wing of a bat and the human arm) due to evolutionary differentiation from a corresponding part in a common ancestor - compare analogy

## analogy

Pronunciation: |ə-'na-lə-jē $\backslash$
Function: noun
Inflected Form(s): plural anal.o.gies
Date:15th century
4: correspondence in function between anatomical parts of different structure and origin - compare homology

# "Functionally corresponding" or "Functionally equivalent" 

 areas???
## Monkey retinotopy



Brewer, Press, Logothetis, Wandell (2002) JN 22: 104 I6-26

## Much similarity between monkey \& human



Brewer, Press, Logothetis, Wandell (2002) JN 22: |04 I6-26


Some areas in the human have no topographical eqivalent in the monkey (e.g.V7, LOI, LO2)

Some areas are in the same location but have very different function (e.g.V3a is very sensitive to motion only in humans)

To really establish equivalencies between human and monkey, we need FACTs!!!

Critically, after establishing topography, we need to understand function!

