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a b s t r a c t 

In the domain of human neuroimaging, much attention has been paid to the question of whether and how the development of functional magnetic resonance imaging 

(fMRI) has advanced our scientific knowledge of the human brain. However, the opposite question is also important; how has our knowledge of the brain advanced 

our understanding of fMRI? Here, we discuss how and why scientific knowledge about the human and animal visual system has been used to answer fundamental 

questions about fMRI as a brain measurement tool and how these answers have contributed to scientific discoveries beyond vision science. 
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. Introduction 

The field of vision science, like other domains of cognitive neuro-

cience, has widely adopted functional MRI (fMRI) as one of its core

ools. This has led some researchers to ask how much, if anything, fMRI

as taught us about the human visual system. A symposium at the 2021

nnual meeting of the Vision Sciences Society was dedicated to this ques-

ion ( Aguirre et al., 2021 ). Here, we draw attention to the fact that many

ision scientists have used fMRI to answer the opposite question. 

What has our existing knowledge of the visual system taught us about

unctional MRI? 

fMRI’s potential as a tool for advancing our understanding of brain

unction depends on the properties of the tool and the signal that it mea-

ures. Here, we observe that vision science has been especially fruitful

n characterising fMRI – both the instrument itself and the neurovascu-

ar signal underlying its measurements. This is because vision science

llows one to control an input stimulus which predictably controls the

eural signal in space and time. One can then link the expected neural

ignal to the observed fMRI signal, increasing our understanding of what

MRI is measuring. Such studies do not necessarily lead to a new under-

tanding of how the visual system encodes information, nor should we

xpect them to. Rather, the goal is an improved understanding of fMRI

nd the blood oxygen-level dependent (BOLD) signal that is the basis

f most fMRI measures. This, in turn, is useful for making new discov-

ries in other aspects of brain function where less is known about the

elationship between input (stimulus or task) and neural responses. In

articular, vision science has been used to address questions such as: 

• What does fMRI measure? 

• What is the nature of the hemodynamic response function (HRF)? 

• What is the resolution of information that fMRI can measure? 
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• Can information within the fMRI signal be used in decoding and

encoding models? 

• Do the effects of large draining veins on the fMRI signal obscure our

view of local neural activity? 

• Are fMRI-based parcellations of the cortex reliable and are compu-

tational fMRI methods reproducible? 

In the long run, scientists and clinicians are more interested in under-

tanding brain function than the tools used to measure it. However, the

ormer depends on the latter. Here we present a summary of research

n which the systematic nature of vision science has been used to an-

wer the above questions, and how these answers have contributed to

cientific disciplines beyond vision. 

. What does fMRI measure? 

Early fMRI studies exposed rodents to global physiological stimula-

ion and showed that blood oxygenation can be used as an endogenous

ontrast agent for MRI ( Ogawa et al., 1990a , 1990b ). This suggested that

MRI might be used to indirectly measure neural activity. However, un-

il experiments were conducted in humans with sensory stimulation, it

as unknown exactly how neural activity would affect the BOLD signal.

n fact, Ogawa and Colleagues (1990a) speculated that the BOLD signal

ight decrease during heightened neural activity: " When some region in

 brain is much more active than other regions, the active region could show

arker lines in the image because of the increased level of deoxyhemoglobin

esulting from higher oxygen consumption ". 

Within a couple of years, human fMRI measurements were made

ith visual ( Kwong et al., 1992 ; Ogawa et al., 1992 ) and motor

 Bandettini et al., 1992 ) stimulation and the opposite was found: Stim-

lation caused the fMRI signal to increase, consistent with foundational

ork from the 1980s showing that neural activity can lead to an increase
SA. 
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n the supply of oxygenated blood outstripping the consumption of oxy-

en ( Fox and Raichle, 1986 ). Ogawa et al. (1992) found that visual stim-

lation increased the water proton signal in primary visual cortex (V1).

mportantly, they found that the proton signal in the tissue nearby (out-

ide of) small vessels increased, and that this signal could be followed

n time with the fMRI measurement. Shortening the echo time reduced

he fMRI signal contrast, indicating that signal changes are caused by a

hange in T 2 
∗ relaxation. This was the first human study to show that a

timulus drives an intrinsic contrast agent (changes in the concentration

f deoxyhemoglobin in cerebral blood) and that this is what BOLD mea-

ures. This study used visual stimulation because the researchers knew

recisely where in the cortex to look for responses and because they

new that a visual stimulus would produce strong neural activity that

ould be easily controlled. It would have made little sense to attempt to

ake new discoveries about the neural basis of perception while simul-

aneously trying to learn how fMRI works. 

As implied from the initial fMRI work, the BOLD signal depends on

 complex interplay of changes in oxygen consumption, blood flow, and

lood volume. Vision science has been used to understand the interplay

f these processes and how they are reflected in the fMRI response. In

articular, much foundational work on the biological contributions to

he BOLD signal have depended on experiments with visual stimulation,

ncluding fundamental work on glucose ( Fox et al., 1988 ) and oxidative

etabolism ( Hoge et al., 1999 ; Thompson et al., 2004 , 2003 ) in the hu-

an brain; on calibrated fMRI ( Blockley et al., 2013 ; Davis et al., 1998 );

n the contribution of cerebral metabolic rate of oxygen consumption,

lood flow and volume to the BOLD response ( Buxton et al., 2004 ;

wong et al., 1992 ; Lu et al., 2003 ; Ogawa et al., 1993 ) and on the spa-

ial localization of these components ( Duong et al., 2001 ; Malonek and

rinvald, 1996 ; Vanzetta and Grinvald, 1999 ; Zhao et al., 2006 ). These

tudies used visual stimulation because it provided a specific cortical

arget (calcarine sulcus), it enabled precise temporal control of neural

ctivity, and it induced large, sustained neural activity as long as the

timulus is present (for review see Hillman 2014 ). 

These key studies linked blood oxygenation to the fMRI response;

owever, they did not address what kinds of neural activity might cause

hanges in blood oxygenation. It is likely that many facets of neural ac-

ivity influence the BOLD signal and there is not a single, simple an-

wer to this question (and we do not attempt to answer it here). For re-

iews targeting this question, see Drew (2019) , Logothetis (2003) , and

ogothetis and Wandell (2004) . However, vision science found a useful

ay to reframe and address this question by using known properties of

he visual system in specific brain areas and well-oiled stimulus regimes.

Visual neurophysiology experiments in animal models have de-

cribed neural responses to systematic variations in fundamental visual

roperties, such as image contrast and motion coherence, well before the

dvent of fMRI. Researchers were able to take advantage of these neural

esponses to better understand the underlying neural signal that fMRI

easures. Here, we focus on examples of research linking the fMRI sig-

al to stimulus manipulations for which the neural response was known

rior to the fMRI experiments. Work from Rees et al. (2000) used vi-

ual area hMT + to explore the neural basis of the fMRI signal. The

ignal in hMT + increased linearly with stimulus motion coherence (cf.

irman and Gardner 2018 ), as did prior measurements of average single

euron firing rates in monkey MT, linking the two signals together. Sup-

ort came from a follow-up from Heeger et al. (2000) who compared the

MRI signal in human V1 with electrophysiological recordings of neural

ring from monkey V1. Both measurements were driven by stimuli that

ystematically varied in contrast. Moreover, there was a proportional

elationship between fMRI signal and the firing rate of V1 neurons. This

ink between the contrast response measured with electrophysiological

nd fMRI signals has been strengthened by experiments showing that

haracteristics such as adaptation ( Gardner et al., 2005 ) and satura-

ion ( Vinke et al., 2022 ) can be reliably measured with fMRI. Moreover,

imultaneous measurements of contrast response have shown a linear

 Cardoso et al., 2012 ) or threshold-linear ( Logothetis et al., 2001 ) re-
2 
ationship between the fMRI and electrophysiological signal, thereby

orming a foundation for the linkage of these measured fMRI signals to

ehavioral measurements ( Boynton et al., 1999 ). 

Winawer et al. (2013) investigated the relation between the fMRI

OLD signal and electrocorticographic (ECoG) responses in visual cor-

ex in the spatial domain. BOLD and broadband ECoG responses had the

ame sub-additive spatial summation, whereas stimulus locked ECoG re-

ponses did not. They concluded that asynchronous broadband signals

closely correlated with spiking) are an important contributing factor

o the BOLD signal. Other work has used carefully controlled stimuli

nd a neural model to confirm that the broadband response in ECoG

s well matched to the BOLD signal, but that additional variance in

he BOLD signal is related to the power of low frequency oscillations

 Hermes et al., 2019 ). This supports the claim that the BOLD signal is

nfluenced by neural signals other than spiking ( Logothetis and Wan-

ell, 2004 ). 

It was not necessary to complete simultaneous measurements in

hese studies because a quantitative link was enabled by matching stim-

lus parameters and recording locations. These studies shed light on the

eural basis of the fMRI signal not by directly comparing the fMRI re-

ponse to neural activity (as the two are measured in different units,

ime scales, and spatial extents) but by comparing each of them with

eference to parametric variations in the visual stimulus ( Fig. 1 ). Three

dvantages of this model-based, or ’stimulus-referred’ method over a

orrelation method are that: (1) it is robust to variation in signal-to-

oise across measurement modalities; (2) it ensures a large dynamic

ange in the responses; and (3) it captures responses to stimulus prop-

rties that are presumed to be important for information encoding. Fi-

ally, these stimulus-referred approaches have recently been expanded

o ’image computable’ approaches ( Kay et al., 2008 ) that can provide

eeper understanding of how responses at the neural level translate to

opulation responses measured by fMRI ( Gardner and Merriam, 2021 ).

. What is the nature of the hemodynamic response function 

HRF)? 

Vision science has been used to assess whether the fMRI signal obeys

inearity. Many fMRI analyses and experimental designs (especially fast,

vent-related designs) rely on the assumptions that the fMRI signal

an be averaged across trials and sums approximately linearly in time.

oynton et al. (1996) tested a ’linear transform model’ of the fMRI signal

 Bandettini et al., 1993 ; Friston et al., 1995 ) in which V1 neural activity

s a nonlinear function of stimulus contrast and the corresponding fMRI

ignal is a linear transform of this neural activity ( Fig. 2 A). In particular,

he authors were interested in testing whether the fMRI response could

e approximated as a shift-invariant linear transform of the neural re-

ponse (averaged over local spatial and temporal extents). This was an

mportant test, because if the answer is yes, one can measure the fMRI

ignal in many kinds of experiments, deconvolve it, and infer the neural

esponses to stimuli or tasks. 

Testing linearity was an ambitious goal since the authors did not

ave direct access to the neural response and because the relationship

etween a stimulus and its BOLD response is presumed to contain non-

inearities (as opposed to the neural response and the BOLD response,

hich may be approximately linear). The key to testing the linearity

f the neural to BOLD transform was choosing and varying stimulus

imensions for which the neural response was expected to be linear. This

as made possible from prior work in visual neuroscience. When they

ested linearity by varying contrast (the ‘scaling’ property of a linear

ystem), linearity failed ( Fig. 2 B). This was expected because the neural

esponse to stimulus contrast is non-linear. When they tested temporal

inearity at the scale of several seconds, linearity held: the response to a

2 s stimulus was well predicted by copying, shifting, and summing the

esponse to a six-second stimulus ( Fig. 2 C). One caveat is that the brief

timuli gave a larger than expected response predicted by this linearity,

ikely due to neural adaptation ( Boynton et al., 2012 ). 
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Fig. 1. The neural basis of the fMRI signal can be tested by comparing responses with reference to parametric variations of an input stimulus. (A) A set of stimuli 

are chosen that parametrically vary in some dimension - in this case, spatial contrast. (B) Measurements are made in multiple modalities. These measurements do 

not need to be made simultaneously or even in the same individuals or species. (C) Responses are modeled as a function of the stimulus using the same model form 

(but different fitted parameters) for each modality. For example, one can estimate R 0 , R max , c 50 , and n for different measurement types in response to variations in 

stimulus contrast. (D) The model parameters are compared between multiple measurement types with reference to parametric variations in stimulus contrast. Note 

that the measurements in (B) are not directly compared to each other. 

Fig. 2. Testing the linear transform model of the fMRI response. (A) Neural activity tends to be a nonlinear function of the stimulus. The linear transform model tests 

whether the fMRI response is a linear function of neural activity. (B) Although the fMRI response monotonically increases with stimulus contrast, additivity fails. The 

summed fMRI response to 2 × 50% contrast stimuli is smaller than the response to 1 × 100% contrast stimulus. This is presumed to be due to non-linearities in the 

stimulus-to-neural transform. (C) The fMRI response obeys temporal additivity; the summed fMRI response to 2 × 6s stimuli shifted in time is similar to the response 

of 1 × 12s stimulus. Here, the neural response to the second 6 s period is assumed to be similar to the neural response to the first 6 s period. Note that BOLD signal 

in (B) and (C) is simulated. 
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The linear transform model was more fully tested by convolving the

redicted neural time-course with a shift-invariant linear temporal fil-

er to predict the stimulus-evoked fMRI responses ( Boynton et al., 2012 ,

996 ). This was found to be a good fit. Thus, the hemodynamic response

unction (HRF) is approximately linear in time. The authors conducted

his work in V1 because they required a region where they could lo-

alise the fMRI signal and because they understood how a visual stim-

lus would drive the neural –but not fMRI– response ( Boynton et al.,

012 ). 

Further, Dale and Buckner (1997) investigated whether selective av-

raging techniques could be applied to visually evoked fMRI responses.

hey found that the fMRI signal can be linearly summed across both

hort and intermixed trials. These two studies used simple contrast pat-

erns of varying duration, and acted as the catalyst of the development of

anonical HRF models that act as a transfer function between neural ac-

ivity and the fMRI signal throughout the human brain ( Huettel, 2012 ),

aying the basis for thousands of subsequent event-related fMRI studies.

his work also allowed researchers to use fMRI to investigate dimensions

nd brain regions for which there is no model of the neural response.

owever, for this work to take place, the nature of the fMRI signal itself

ad to be first established. 

Likewise, vision science has contributed to our understanding of con-

ributing factors to ’negative BOLD’, that is, a decrease in the BOLD sig-

al during experimental tasks. Shmuel et al. (2002) addressed a funda-

ental question in neuroimaging: does a negative BOLD response imply

 reduction in neural activity or is it a purely vascular phenomenon

 Wade, 2002 )? They answered this by characterising negative BOLD

n human V1-V3. Stimulus-contrast and stimulus-duration dependent

hanges in positive BOLD were mirrored in negative BOLD. To estab-

ish that the BOLD signal was negative, the authors defined a mean-

ngful baseline as the BOLD response to a uniform field (mean lumi-

ance). They justified this choice based on classic vision science find-

ngs from Hubel and Wiesel (1962) demonstrating that the responses

f neurons in early visual cortex are largely insensitive to mean lumi-

ance, driven instead by contrast. To probe the coupling between posi-

ive and negative BOLD, Schumel et al. (2002) interleaved fMRI BOLD

cans and scans that measured cerebral blood flow. Clusters of nega-

ive BOLD were spatially correlated with reductions in cerebral blood

ow, indicating that negative BOLD is due to a decrease in the rate

f oxygen consumption, reflecting a decrease in neural activity in re-

ponse to neural suppression. The locations of positive and negative

OLD on the cortical surface, combined with stimulus selection, enabled

he researchers to interpret the results in terms of neural receptive fields

surround suppression). This work found support in a follow-up study,

here Shmuel et al. (2006) showed that negative BOLD is associated

ith local decreases in neural activity measured from electrophysiol-

gy. Although negative BOLD does not always imply a decrease in neu-

al activity, the value in these studies was a demonstration that negative

OLD can be caused by a decrease in neural activity. The importance

as in providing a new characterisation of one part of the fMRI signal,

ather than a discovery of how visual circuits work. Negative BOLD has

ecome an increasingly important topic of investigation outside of vi-

ual areas, including resting state networks ( Parker and Razlighi, 2019 ;

estieri et al., 2011 ; Sormaz et al., 2018 ) and task-related responses in

otor cortex ( Yuan et al., 2011 ; Zeharia et al., 2012 ). 

. What is the resolution of information that fMRI can measure? 

The organisation of visual regions into spatial maps enables estima-

ion of the point-spread or line-spread function–the spatial extent of ac-

ivation on cortex from a small stimulus. In V1, the line spread func-

ion (full width at half max) has been estimated to be about 3.5 mm

 Engel et al., 1997 ). To determine whether fMRI can resolve neural ac-

ivity at an even finer scale than the line function, the spatial pattern

f neural activity must be precisely tailored; one cannot test the resolu-

ion limits of the BOLD signal if the neural activity is correlated across
4 
 large region of cortex. Vision science provided the theory on how to

o this. 

Ocular dominance columns in V1 were identified in animal models

ong before their initial measurement using fMRI ( Horton and Hock-

ng, 1996 ; Hubel and Wiesel, 1963a ; Wiesel and Hubel, 1963 ). It was

lready known that human ocular dominance columns are ∼1 mm wide

 Adams et al., 2007 ; Adams and Horton, 2009 ) and each column’s oc-

lar selectivity varies at a fine scale. Thus, ocular dominance columns

ere an ideal model for investigating the spatial resolvability of the

MRI signal, which may be limited by vascular blurring. Indeed, fMRI

ignals driven by visual input to the left or right eye could be reliably

esolved by some fMRI sequences ( Cheng et al., 2001 ; Yacoub et al.,

007 ), confirming the submillimeter resolvability of the fMRI signal. 

This work showed that fMRI can be sensitive to fine-scale neural

roperties, enabling researchers to investigate functional subdivisions

n the cortex at a high resolution. For example, classical electrophysio-

ogical work in non-human primates identified thin and thick stripes in

2 ( Livingstone and Hubel, 1982 ; Roe and Ts’o, 1995 ; Tootell et al.,

983 ). These stripes are selective for colour ( Hubel and Living-

tone, 1985 ; Tootell et al., 2004 ) and binocular disparity ( Hubel and

ivingstone, 1987 ), respectively, and are ∼1.3 mm wide in macaque

 Tootell and Hamilton, 1989 ) –below the 3.5 mm line spread function

f the BOLD signal. There has been uncertainty around the existence of

hese stripes in human V2. Indeed, 7T fMRI work has shown that human

2 also has a striped architecture ( Dumoulin et al., 2017 ; Nasr et al.,

016 ), supporting the submillimeter resolvability of fMRI. These stud-

es activated stripes by controlling specific stimulus properties (high vs

ow temporal frequency, achromatic vs chromatic, and with or without

inocular disparity). 

Together, these studies used known properties of the visual pathways

eye-of-origin selectivity, temporal and chromatic sensitivity within

he magno- and parvocellular pathways) to target fine-scale structures.

hus, with careful analysis methods and tight stimulus control, the fMRI

ignal can be sensitive to fine scale neural properties. Understanding the

patial resolution of the fMRI signal is important for researchers seek-

ng to make discoveries about the detailed organisation of cortical ar-

as where functional subdivisions are uncertain–such as memory areas

 Dalton et al., 2018 ; Doeller et al., 2010 ; Hodgetts et al., 2017 ) – or even

nknown, such as language areas ( Binder et al., 1997 ) for which animal

odel homologues do not exist. 

. Can information within the fMRI signal be used in decoding 

nd encoding models? 

Vision science has also been used to assess whether the fMRI signal

an be linked to the representation of information in different brain ar-

as. Popular fMRI classification and pattern-analysis techniques were

rst developed using vision experiments. Multivoxel pattern analysis

MVPA), which uses classification algorithms to search for patterns of

MRI activity across pools of voxels (see Norman et al. 2006 ), was de-

eloped using fMRI responses to faces, objects, and grating orientation

n visual cortex ( Haxby et al., 2001 ; Kamitani and Tong, 2005 ). Sim-

larly, representational similarity analysis (RSA), which characterises

eural representations of experimental conditions via the dissimilar-

ty of fMRI activity patterns, was developed using fMRI responses to

ategorical visual object representations in ventral temporal cortex

 Edelman et al., 1998 ; Kriegeskorte et al., 2008 ). These classification

echniques have since been used to answer questions about topics out-

ide of vision in regions beyond visual cortex, including spatial represen-

ation ( Berens et al., 2021 ; Hassabis et al., 2009 ) and episodic memory

 Chadwick et al., 2010 ) in the hippocampus, mnemonic representations

n working memory ( Kwak and Curtis, 2022 ), the representation of per-

eived body size in extrastriate body area ( Carey et al., 2019 ), and the

eural representation of emotion in brain regions associated with theory

f mind ( Skerry and Saxe, 2015 ). 
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The MVPA method has led to an active debate regarding the spa-

ial scale of information driving successful pattern classification. Vision

cience has been central in this debate. Electrophysiological work in an-

mal models identified orientation pinwheels in V1 in the form of orien-

ation selective hypercolumns with a periodicity of ∼2 mm ( Blasdel and

alama, 1986 ; Hubel and Wiesel, 1963b ; Ohki et al., 2006 ). Some have

sed these pattern classification analyses to seemingly decode orien-

ation information from these fine-scale pinwheels ( Alink et al., 2013 ;

aynes and Rees, 2005 ; Kamitani and Tong, 2005 ; Kay et al., 2008 ).

owever, others have argued that the decoding measurements are dom-

nated by coarse-scale orientation biases ( Freeman et al., 2013 ), rather

han fine-scale activity. More recently, coarse-scale orientation biases

ave been linked to changes in the fMRI signal due to stimulus vi-

netting (i.e., the change in contrast along a stimulus edge) rather than

ortical structure ( Roth et al., 2018 ). These findings suggest pattern-

lassification techniques applied to other domains are also likely to be

ost sensitive to large-scale biases, rather than sub-millimetre struc-

ures. A practical lesson from this debate: when classification meth-

ds lead to accurate decoding in a novel paradigm, researchers ought

o check for the existence of neural tuning at a coarse spatial scale

 Gardner and Merriam, 2021 ). 

These classification methods test the ability to decode inputs such

s a visual stimulus. Vision science has also been at the forefront of

eveloping encoding models tested with fMRI. These computational ap-

roaches successfully linked the fMRI signal to neural properties. For

xample, the population receptive field (pRF) model ( Dumoulin and

andell, 2008 ) provides a quantitative framework to link the fMRI sig-

al with neural response properties of cortical cells. This framework is

he genesis of many computational approaches to fMRI. The pRF model

s defined in terms of input parameters that are informed by theory of

isual receptive fields in visual cortex. Since its inception and initial

pplication, the pRF model has been used to understand topographic

rganisation for other stimulus types and cortical regions: somatosen-

ory cortex ( Puckett et al., 2020 ; Schellekens et al., 2021 ; Wang et al.,

021 ), auditory cortex ( Thomas et al., 2015 ), numerosity maps in pari-

tal cortex ( Harvey et al., 2013 ; Harvey and Dumoulin, 2017 ; van Dijk

t al., 2021 ), sensory substitution ( Hofstetter et al., 2021 ), semantic

pace ( Huth et al., 2012 ), and event timing ( Harvey et al., 2020 ). Fur-

her, the computational approach to studying visual cortex has demon-

trated that the magnitude of the fMRI response, which is measured at

he scale of seconds, is impacted by neural dynamics at the millisecond

cale ( Horiguchi et al., 2009 ; Stigliani et al., 2017 ; Zhou et al., 2017 ). 

Having a domain like vision science, in which some of the results

re expected from prior knowledge, has provided a solid foundation for

he extension of the computational approach to other domains; for ex-

mple, the pRF model has been expanded to assess the canonical com-

utation of normalisation that is thought to occur throughout the brain

 Aqil et al., 2021 ). Overall, the forward modeling approach provides an

lternative to the subtraction approach (i.e., measuring contrast maps

etween stimuli, task, or groups) ( Van Orden and Paap, 1997 ), affording

reater generalisation and explanatory depth. 

. Do the effects of large draining veins on the fMRI signal 

bscure our view of local neural activity? 

Artefacts in the fMRI signal can have vascular origins. Vascular

raining can contaminate fMRI signal from any region of the cortex in

hich large veins exist, posing a fundamental problem of interpretation

f the fMRI signal: “The realization in 1993 of the large vein contribution

as highly disturbing to us. Large veins drain blood from large patches of cor-

ex and their distribution is spatially sparse. Therefore, they cannot provide

igh spatial fidelity to neuronal activity in functional imaging ” ( Menon et al.,

993 ; U ğurbil, 2018 ). Understanding this complication for the entire

eld of fMRI was best addressed by harnessing known properties of neu-

al circuits in visual cortex. Vision science enables specific predictions

bout expected fMRI responses, including their location, strength, and
5 
he timing of their activation. Thus, visual stimulation is well-suited to

etect anomalous responses and then link these responses to vascular

rtefacts (e.g., Lee et al. 1995 and Winawer et al. 2010 ). 

Visual experiments have been used to clarify the ability of

MRI to distinguish neural effects from vascular confounds.

ay et al. (2019) used simple visual stimuli to examine the rela-

ionship between veins and the fMRI signal in early visual cortex. The

resence of veins amplified and caused spatial displacement of the fMRI

ignal. Likewise, vision science has contributed to the development of

echniques that correct for venous artefacts. Kay et al. (2020) developed

 method that produced data-driven estimates of venous effects on the

MRI signal. These effects were modeled and used to separate the fMRI

ignal into one component related to the microvasculature (capillaries

nd small venules) and one related to the macrovasculature (large

eins). Olman et al. (2007) showed that a differential experimental

esign (rather than single stimulus condition interleaved with a blank

aseline) minimises the contribution of large veins to the fMRI signal.

oth techniques were developed using vision science experiments

ecause the authors could spatially localise a robust fMRI signal.

inally, vision science has been used to validate the ability of spin-

cho sequences to compensate for venous artefacts from large veins.

lman et al. (2012) used spin-echo sequences to identify fine-scale

tructures in visual cortex that would otherwise be masked by venous

rtefacts appearing in a gradient-echo sequence ( Ugurbil, 2016 ). The

eneral findings are that while vessel-related limits are certainly real,

nder appropriate conditions they can be corrected, and fMRI can

eliably probe neural function at the millimetre scale. 

The advent of 7T fMRI has given rise to the study of laminar circuitry

n the human brain. Vision science has inspired models of how veins con-

ribute to changes in the fMRI signal across cortical depth. The BOLD

ignal blurs towards the superficial surface due to ascending veins and

urface vasculature ( Duvernoy, 1999 ; Polimeni et al., 2010 ), causing a

reater BOLD towards the superficial surface ( Kay et al., 2019 ). How-

ver, this does not accurately reflect the distribution of neural activity.

avlicek and Uluda ğ (2020) modeled the effects of veins on the BOLD

ignal across lamina; depth-dependent variability in the BOLD signal

riginated from depth-dependent changes in vasculature. Importantly,

heir model was motivated by experimental observations about how the

eural signal changes across lamina in animal visual cortex. 

Correcting vascular artefacts is vital for achieving high resolution

MRI measurements. Results from past vision experiments have in-

ormed and validated methods that correct for venous artefacts across

epth. Work from Markuerkiaga et al. (2021) found that deconvolving

amina activation profiles with a physiological point spread function re-

oves venous artefacts (i.e., deconvolution ’flattens’ the trend of BOLD

ncreasing towards the superficial surface). The point spread function

as derived from a model of vasculature based upon histological stud-

es of V1 ( Markuerkiaga et al., 2016 ). Further, the deconvolved lamina

rofiles were validated via comparison to ’gold-standard’ profiles mea-

ured from human visual cortex ( Fracasso et al., 2018 ). Understanding

ow the fMRI signal changes with cortical depth has opened new doors

or research to investigate neural tuning properties ( De Martino et al.,

015 ; Fracasso et al., 2016 ; Olman et al., 2012 ) and feed-back signalling

 Klein et al., 2018 ; Kok et al., 2016 ; Lawrence et al., 2019 ; Muckli et al.,

015 ; Sharoh et al., 2019 ) across laminae. 

. Are fMRI-based parcellations of the cortex reliable and are 

omputational fMRI methods reproducible? 

One benefit of fMRI over other methods that probe brain function is

ts large field of view: one can sample the fMRI signal across the whole

rain every second or so. Thus, fMRI can be used to understand how

he brain is parcellated into discrete areas. Parcellation schemes are

seful for understanding brain function and linking results across stud-

es and laboratories. However, the utility of parcellations depends on

heir accuracy. Vision science has provided tools for validating parcel-
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ation schemes by comparing them against boundaries from retinotopic

aps. If a parcellation scheme differs from known retinotopic maps, re-

earchers can question the validity of the scheme. 

For example, Laumann et al. (2015) used resting state functional con-

ectivity to parcellate a highly scanned individual’s cortex. The parcel-

ations were validated via their correspondence with measured retino-

opic maps, especially V1-V3, as their borders are well-defined by polar

ngle reversals. The V1 parcellation aligned to its retinotopic bound-

ry. However, cross-subject averaging of the parcellations resulted in

alse positives (parcellation boundaries that did not correspond to any

etinotopic boundaries) and false negatives (retinotopic boundaries that

id not correspond to any parcellation boundaries) in V2 and V3. Thus,

ross-subject transformations of fMRI data obscured patterns in inter-

ndividual brain organisation, highlighting the importance of individ-

al analysis of fMRI data. In a similar vein, Glasser et al. (2016) used

 semi-automated neuroanatomical approach to parcellate group-level

ultimodal data from the Human Connectome Project (HCP). In this

ase, the parcellations of early visual field maps aligned to the retino-

opically defined V1-V3 boundaries from Abdollahi et al. (2014) , vali-

ating the accuracy of the parcellations and their multimodal method. 

The reliability and reproducibility of fMRI methods have been use-

ully assessed with vision science methods. Recently, much attention has

een placed on the reproducibility of psychology ( Open Science Collab-

ration, 2015 ) and neuroimaging studies ( Botvinik-Nezer et al., 2020 ;

arek et al., 2022 ; Poldrack et al., 2017 ). Human retinotopic maps are

ighly reproducible ( Benson et al., 2018 ; Himmelberg et al., 2021 ; Lage-

astellanos et al., 2020 ; Lerma-Usabiaga et al., 2020 ; van Dijk et al.,

016 ) and large, publicly available datasets of fMRI responses in vi-

ual cortex, such as the HCP Retinotopy ( Benson et al., 2018 ) and NSD

atasets ( Allen et al., 2022 ), are at the forefront of understanding brain

unction. Even the large sample sizes of retinotopic mapping datasets

 Benson et al., 2018 ; Himmelberg et al., 2021 ) are relatively small when

ompared to the sample sizes needed for reproducibility of some fMRI

ethods ( Marek et al., 2022 ), consistent with the idea that the fMRI re-

ponse can be highly reliable when coupled to appropriate stimuli and

nalysis methods ( Rosenberg and Finn, 2022 ). This high level of repro-

ucibility in retinotopic data is due to the implementation of an explicit

omputational approach in characterising the fMRI signal. 

. Why has vision science been so useful for fMRI? 

The methods underlying vision science guide us on how to drive

he system with large signals that are spatially and temporally precise.

or example, established knowledge of visual processing tells us that

patial and temporal contrast are more important stimulus parameters

han luminance, and these parameters will drive the largest fMRI signal.

ne probably would not want to use, for example, language or emo-

ion, as a tool to test the linear transform model of the BOLD response,

s there may be unknown non-linearities in the stimulus-to-neural re-

ponses, and experimenters cannot precisely control the onset, offset,

nd intensity of the neural responses via their stimulus. On the other

and, one might apply the linearity findings from visual neuroimaging

o help model the responses in a study of language or emotion. Likewise,

he organisation of the visual system is well - documented, allowing for

ighly accurate spatial localisation of the fMRI signal in space and time.

inally, vision science equips us with tools to parametrically manipu-

ate the strength of the neural and fMRI signal. For example, we know

hat contrast is the currency of the visual system and we understand

ow varying the contrast of a stimulus will drive both neural and fMRI

ignals. This allows researchers to define the fMRI response in units of

isual stimulus and compare the fMRI response with measurements from

ther instruments. 

We do not wish to argue that other fields should necessarily adopt

he same methods described here, nor do we suggest that vision science

as been the sole contributor to understanding fMRI. Indeed, disciplines

eyond vision science have made major contributions to understanding
6 
MRI. For example, one of the first human BOLD experiments targeted

he motor system ( Bandettini et al., 1992 ) and an important study on the

eural basis of the BOLD signal used auditory stimuli ( Mukamel et al.,

005 ), though the ease with which one can present calibrated stimuli

nd the precision with which we can predict the neural response are

he appeal of using vision. Most of the studies we have described took

dvantage of known features of the nervous system to make discoveries

bout fMRI. When the goal is to make new discoveries about the nervous

ystem rather than about fMRI, sometimes different methods are needed.

ur point is instead that studies which characterise the measurement

tself (fMRI and the BOLD signal) can be of great value, and that the

ools of vision science are well suited to this goal. 

The systematic (and perhaps tedious) nature of vision science has

aid off; it has advanced our understanding of fMRI, starting with the

OLD signal and more recently with the development of computational

odels to characterise the fMRI response. Although we have focused

n fMRI, a similar approach can be used to better understand other

orms of brain measurement technology, such as functional ultrasound

 Macé et al., 2011 ) or portable modular quantum magnetometer systems

 Tierney et al., 2019 ). Overall, the advancement in our understanding

f fMRI afforded through vision science has benefited psychology, by

llowing psychologists to non-invasively measure the neural basis of

 whole array of human behaviours and thereby shaping the way we

hink about human psychology, and medicine, by allowing medical re-

earchers to detect changes in cortical neural circuit functioning in re-

ponse to disease or therapy. 
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