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SUMMARY

A fundamental challenge in social cognition is how
humans learn another person’s values to predict their
decision-making behavior. This form of learning is
often assumed to require simulation of the other by
direct recruitment of one’s own valuation process
to model the other’s process. However, the cognitive
and neural mechanism of simulation learning is not
known. Using behavior, modeling, and fMRI, we
show that simulation involves two learning signals
in a hierarchical arrangement. A simulated-other’s
reward prediction error processed in ventromedial
prefrontal cortex mediated simulation by direct
recruitment, being identical for valuation of the self
and simulated-other. However, direct recruitment
was insufficient for learning, and also required
observation of the other’s choices to generate a
simulated-other’s action prediction error encoded
in dorsomedial/dorsolateral prefrontal cortex. These
findings show that simulation uses a core prefrontal
circuit for modeling the other’s valuation to generate
prediction and an adjunct circuit for tracking behav-
ioral variation to refine prediction.

INTRODUCTION

A fundamental human ability in social environments is the simu-
lation of another person’s mental states, or hidden internal vari-
ables, to predict their actions and outcomes. Indeed, the ability
to simulate another is considered a basic component of mental-
izing or theory of mind (Fehr and Camerer, 2007; Frith and Frith,
1999; Gallagher and Frith, 2003; Sanfey, 2007). However,
despite its importance for social cognition, little is known about
simulation learning and its cognitive and neural mechanisms. A
commonly assumed account of simulation is the direct recruit-
ment of one’s own decision-making process tomodel the other’s
process (Amodio and Frith, 2006; Buckner and Carroll, 2007;
Mitchell, 2009). The direct recruitment hypothesis predicts that

one makes and simulates a model of how the other will act,
including the other’s internal variables, as if it is one’s own
process, and assumes that this simulated internal valuation
process employs the same neural circuitry that one uses for
one’s own process. As such, the hypothesis is parsimonious
and thus attractive as a simple explanation of simulation, but it
is also difficult to examine experimentally and therefore lies at
the heart of current debate in the social cognition literature
(Adolphs, 2010; Buckner and Carroll, 2007; Keysers and
Gazzola, 2007;Mitchell, 2009; Saxe, 2005). A definitive examina-
tion of this issue requires a theoretical framework that provides
quantitative predictions that can be tested experimentally.
We adopted a reinforcement learning (RL) framework to

provide a simple, rigorous account of behavior in valuating
options for one’s own decision-making. RL also provides a clear
model of one’s internal process using two key internal variables:
value and reward prediction error. Value is the expected reward
associated with available options, and is updated by feedback
from a reward prediction error—the difference between the pre-
dicted and actual reward. The RL framework is supported by
considerable empirical evidence including neural signals in
various cortical and subcortical structures that behave as pre-
dicted (Glimcher and Rustichini, 2004; Hikosaka et al., 2006;
Rangel et al., 2008; Schultz et al., 1997).
The RL framework or other parametric analyses have also

been applied to studies of decision making and learning in
various social contexts (Behrens et al., 2008; Bhatt et al., 2010;
Coricelli and Nagel, 2009; Delgado et al., 2005; Hampton et al.,
2008; Montague et al., 2006; Yoshida et al., 2010). These studies
investigated how human valuation and choice differ depending
on social interactions with others or different understandings
of others. They typically require that subjects use high-level
mentalizing, or recursive reasoning in interactive game situations
where one must predict the other’s behavior and/or what they
are thinking about themselves. Although important in human
social behavior (Camerer et al., 2004; Singer and Lamm, 2009),
this form of high-level mentalizing complicates investigation of
the signals and computations of simulation and thus makes it
difficult to isolate its underlying brain signals.
In the present study, we exploited a basic social situation for

our main task, equivalent to a first level (and not higher level)
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mentalizing process: subjects were required to predict the
other’s choices while observing their choices and outcomes
without interacting with the other. Thus, in our study, the same
RL framework that is commonly used to model one’s own
process provides a model to define signals and computations
relevant to the other’s process. We also used a control task in
which subjects were required to make their own value-based
decisions. Combining these tasks allowed us to directly
compare brain signals between one’s own process and the
‘‘simulated-other’s’’ process, in particular, the signals for reward
prediction error in one’s own valuation (control task) and the
simulated-other’s valuation (main task).

Moreover, the main task’s simple structure makes it relatively
straightforward to use the RL framework to identify additional
signals and computations beyond those assumed for simulation
by direct recruitment. Strongly stated, the direct recruitment
hypothesis assumes that the other’s process is simulated by
the same cognitive and neural process as one’s own, and
accordingly, in the main task, the simulation learning would be
expected to use only knowledge of the other’s outcomes, while
a weaker version of the hypothesis would assume only the
involvement of the cognitive process. Indeed, in many social
situations, onemay also observe and utilize the other’s decisions
or choices wherein the stronger hypothesis should be rejected.
We therefore examined whether an additional, undefined
learning signal based on information about the other’s choices
might also be used by humans to simulate the other’s valuation
process.

Employing behavior, fMRI, and computational modeling, we
examined the process of simulation learning, asking whether
one uses reward prediction errors in the same manner that one
does for self learning, and whether the same neural circuitry is
recruited. We then investigated whether humans utilize signals
acquired by observing variation in the other’s choices to improve
learning for the simulation and prediction of the other’s choice
behavior.

RESULTS

Behavior in Simulating the Other’s Value-Based
Decisions and Making One’s Own Decisions
To measure the behavior for learning to simulate the other,
subjects performed two decision-making tasks, a Control task
and an Other task (Figure 1A). The Other task was designed to
probe the subjects’ simulation learning to predict the other’s
value-based decisions, while the Control task was a reference
task to probe the subjects’ own value-based decisions. In both
tasks, subjects repeatedly chose between two stimuli.

In the Control task, only one stimulus was ‘‘correct’’ in each
trial, and this was governed by a single reward probability, i.e.,
the probability p was fixed throughout a block of trials, and the
reward probabilities for both stimuli were given by p and 1 ! p,
respectively. When subjects made a correct choice, they
received a reward with a magnitude that was visibly assigned
to the chosen stimulus. As the reward probability was unknown
to them, it had to be learned over the course of the trials to maxi-
mize overall reward earnings (Behrens et al., 2007). As the
reward magnitude for both stimuli was randomly but visibly

assigned in each trial, it was neither possible nor necessary to
learn to associate specific reward magnitudes with specific
stimuli. In fact, because the magnitudes fluctuated across trials,
subjects often chose the stimulus with the lower reward proba-
bility, even in later trials.
In the Other task, subjects also chose between two stimuli

in each trial, but the aim was not to predict which stimulus
would give the greatest reward, but to predict the choices
made by another person (the other) who was performing the
Control task displayed on a monitor (Figure 1A). Subjects
were told that the other was a previous participant of the exper-
iment, but their choices were actually generated from an RL
model with a risk-neutral setting. Subjects gained a fixed
reward in the trial when their predicted choice matched the
other’s choice; thus, to predict the other’s choices, subjects
had to learn the reward probability that the other was learning
over the trials.
The subjects’ choices in the Control task were well fitted by

a basic RL model that combined the reward probability and
magnitude to compute the value of each stimulus (Equation 1
in Experimental Procedures) and to generate choice probabilities
(Figure S1A available online). Given that the reward magnitude
was explicitly shown in every trial, the subjects needed to learn
only the reward probability. Thus, the RL model was modified
such that the reward prediction error is focused on update
of the reward probability (Equation 2), not of value per se,
as in an earlier study employing this task (Behrens et al.,
2007). The RL model correctly predicted the subjects’ choices
with >90% accuracy (mean ± SEM: 0.9117 ± 0.0098) and
provided a better fit to the choice behavior than models using
only the reward probability or magnitude to generate choices
(p < 0.01, paired t test on Akaike’s Information Criterion [AIC]
value distributions between the two indicated models [Fig-
ure 1D]; see Supplemental Experimental Procedures and Table
S1 for more details), which is consistent with the earlier study
(Behrens et al., 2007).
To compare the subjects’ learning of the reward probability in

the Control and Other tasks, we plotted the percentage (aver-
aged across all subjects) of times that the stimulus with the
higher reward probability was chosen over the course of the trials
(Figure 1B, left) and averaged over all trials (Figure 1B, right).
During the Control task, subjects learned the reward probability
associated with the stimulus and employed a risk-averse
strategy. The percentage of times that the stimulus with the
higher reward probability was chosen gradually increased during
the early trials (Figure 1B, left, blue curve), demonstrating that
subjects learned the stimulus reward probability. The average
percentage of all trials in which the higher-probability stimulus
was chosen (Figure 1B, right, filled blue circle) was significantly
higher than the reward probability associated with that stimulus
(Figure 1B, right, dashed line; p < 0.01, two-tailed t test). This
finding suggests that subjects engaged in risk-averse behavior,
i.e., choosing the stimulus more often than they should if they
were behaving optimally or in a risk-neutral manner. Indeed, in
terms of the fit of the RL model (Supplemental Experimental
Procedures), the majority of subjects (23/36 subjects) employed
risk-averse behavior rather than risk-neutral or risk-prone
behavior.
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In the Other task, subjects tracked the choice behavior of the
other. The percentage of times that the stimulus with the higher
reward probability was chosen by the subjects (Figure 1B, left,
red curve) appeared to follow the percentage of times that the
stimulus was chosen by the other (Figure 1B, left, black curve).
This behavior differed from that of the Control task in that the
percentage increased over trials but did so more gradually and
plateaued at a level below that in the Control task. Indeed, the
average percentage of times that the stimulus with the higher

reward probability was chosen by the subjects in the Other
task (Figure 1B, right, filled red circle) was not significantly
different (p > 0.05, two-tailed paired t test) from that chosen by
the other (Figure 1B, right, filled black circle), but was signifi-
cantly lower than that chosen by the subjects in the Control
task (p < 0.01, two-tailed paired t test). Given that the other’s
choices were modeled using an RL model with a risk-neutral
setting, the subjects’ choices in the Other task indicate that
they were not using risk-averse behavior as they did in the

Figure 1. Experimental Tasks and Behavioral Results
(A) Illustration of the experimental tasks: Control (left) and Other (right). In both tasks, each trial consisted of four phases: CUE, RESPONSE, INTERSTIMULUS

INTERVAL (ISI), and OUTCOME. For every trial in both tasks, subjects chose between two fractal stimuli, and the stimulus chosen by the subject (RESPONSE)

was indicated by a gray frame during the ISI. In the Control task, the ‘‘correct’’ (rewarded) stimulus of the subject was revealed in the center (OUTCOME). In the

Other task, the rewarded stimulus of the other was indicated in the center, and the other’s choice was indicated by a red frame.

(B) Mean percentages of choosing the stimulus with the higher reward probability (across subjects; n = 36) are shown as curves across trials (left; shaded regions

indicate the SEM) and as the averages (±SEM) of all trials (right) for the subjects’ choices in the Control (blue) and Other (red) tasks and the others’ choices in the

Other task (black). These curves were obtained by smoothing each individual’s choices with a Gaussian filter (1.25 trials) and then averaging the results for all

subjects. The dotted line on the right indicates the stimulus reward probability (75%). Asterisks above the horizontal lines indicate significant differences between

the indicated means (**p < 0.01; two-tailed paired t test; n.s., nonsignificant as p > 0.05), and asterisks at each point indicate significant differences from the

stimulus reward probability (*p < 0.05, **p < 0.01, two-tailed t test; n.s., nonsignificant as p > 0.05). Here, we note that the mean percentages of choosing

the stimulus with the higher reward probability for the subject and the other in the Other task were slightly lower than the reward probability associated with the

stimulus reward probability (subjects: p = 0.096; other: p < 0.05, two-tailed t test), which is reasonable given that the averaging included the early trials when

learning was still ongoing.

(C) Similar data averaged across all trials in a separate experiment (error bars = ± SEM). The two Other task conditions, Other I and Other II, correspond to the

other’s choices modeled by the RL model using risk-neutral and risk-averse parameters, respectively. **p < 0.01, significant differences between the indicated

pairs of data (two-tailed paired t test.); n.s., nonsignificant (p > 0.05).

(D) Models’ fit to behaviors in the Control (left) and Other (right) tasks. Each bar (±SEM) indicates the log likelihood of each model, averaged over subjects and

normalized by the number of trials (thus, a larger magnitude indicates a better fit to behavior). **p < 0.01, difference in AIC values between the two indicated

models (one-tailed paired t test over the AIC distributions). TheMG, PR, and RLmodels in the Control task are the RLmodel using rewardmagnitude only, reward

probability only, and both, respectively, to generate choices. In the Other task, S-free RL is a simulation-free RL, and S-RLsAPE, S-RLsRPE, and S-RLsRPE+sAPE are

Simulation-RL models using sAPE error only, sRPE only, and both sRPE and sAPE, respectively.
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Control task but were behaving similarly to the other. Together,
these results suggest that the subjects were learning to simulate
the other’s value-based decision making.

Alternative interpretations, however, might also be possible.
For example, despite the task instruction to predict the other’s
choices, the subjects might have completely ignored the other’s
outcomes and choices and focused instead only on their own
outcomes. In this scenario, they might have performed the Other
task in the same way as they did the Control task, considering
the red frame in the OUTCOME phase (Figure 1A) not as the
other’s choice, as instructed, but as the ‘‘correct’’ stimulus for
themselves. Accordingly, such processing can be modeled by
reconfiguring the RL model used in the Control task, which is
referred to hereafter as simulation-free RL, because it directly
associates the options with the outcomes without constructing
the other’s decision-making process (Dayan and Niv, 2008).
This model did not provide a good fit to the behavioral data
(see the next section) and can therefore be rejected.

An alternate interpretation is that the subjects focused only on
the other’s outcomes, processing the other’s reward as their
own reward, which may have allowed them to learn the reward
probability from the assumed reward prediction error. But if
this were true, there should have been no difference in their
choice behavior between the Control and Other tasks. However,
their choice behavior in the Control task was risk-averse and
risk-neutral in the Other task, thus refuting this scenario. None-
theless, it can still be argued that processing the other’s reward
as their own might have caused the difference in risk behavior
between the two tasks; processing the other’s reward as their
own could have somehow suppressed the risk-averse tendency
that existed when they performed for their own rewards, thereby
rendering their choice behavior during the Other task similar to
the other’s risk-neutral behavior. If so, the subjects’ choice
behavior shouldalwaysbe risk-neutral in theOther task, irrespec-
tive of whether or not the other behaves in a risk-neutral manner.

We tested this prediction using another version of the Other
task in which the other was modeled by an RL model with
a risk-averse setting, and found that, contrary to the prediction,
the subjects’ behavior tracked that of the Other (Figure 1C). We
conducted an additional experiment, adding this ‘‘risk-averse’’
Other task as a third task. The subjects’ behavior in the original
two tasks replicated the findings of the original experiment. Their
choices in the third task, however, did not match those made
when the other was modeled by the risk-neutral RL model
(p < 0.01, two-tailed paired t test), but followed the other’s choice
behavior generated by the risk-averse RL model (p > 0.05,
two-tailed paired t test). Moreover, the subjects’ answers to
a postexperiment questionnaire confirmed that they paid atten-
tion to both the outcomes and choices of the other (Supple-
mental Experimental Procedures). These results refute the above
argument, and lend support to the notion that the subjects
learned to simulate the other’s value-based decisions.

Fitting Reinforcement Learning Models for Simulating
the Other’s Decision-Making Process to Behavior
during the Other Task
To determine what information subjects used to simulate the
other’s behavior, we fitted various computational models simu-

lating the other’s value-based decision making to the behavioral
data. The general form of these ‘‘simulation-based’’ RL models
was that subjects learned the simulated-other’s reward proba-
bility by simulating the other’s decision making process. At the
time of decision, subjects used the simulated-other’s values
(the simulated-other’s reward probability multiplied by the given
reward magnitude) to generate the simulated-other’s choice
probability, and from this, they could generate their own option
value and choice. As discussed earlier, there are two potential
sources of information for subjects to learn about the other’s
decisions, i.e., the other’s outcomes and choices.
If subjects applied only their own value-based decision

making process to simulate the other’s decisions, they would
update their simulation using the other’s outcomes; they would
update the simulated-other’s reward probability according to
the difference between the other’s actual outcome and the simu-
lated-other’s reward probability. We termed this difference the
‘‘simulated-other’s reward prediction error’’ (sRPE; Equation 4).
However, subjects may also use the other’s choices to facili-

tate their learning of the other’s process. That is, subjects may
also use the discrepancy in their prediction of the other’s choices
from their actual choices to update their simulation. We termed
the difference between the other’s choices and the simulated-
other’s choice probability the ‘‘simulated-other’s action predic-
tion error’’ (sAPE; Equation 6). In particular, we modeled the
sAPE signal as a signal comparable to the sRPE, with the two
being combined (i.e., multiplied by the respective learning rates
and then added together; Equation 3) to update the simulated-
other’s reward probability (see Figure S1A for a schematic
diagram of the hypothesized computational processes). Compu-
tationally, this is achieved such that the sAPE is obtained by
transforming the action prediction error that was generated first
at the ‘‘action’’ level (as the difference between the other’s
choice and the simulated-other’s choice probability [Equation 5;
Supplemental Experimental Procedures for more details]) back
into the value level.
With these considerations, we examined three simulation-

based RL models that learned the simulated-other’s reward
probability: a model using the sRPE and sAPE (Simulation-
RLsRPE+sAPE), a model using only the sRPE (Simulation-RLsRPE),
and a model using only the sAPE (Simulation-RLsAPE). As part
of the comparison, we also examined the simulation-free RL
model mentioned above.
By fitting each of these computational models separately to

the behavioral data and comparing their goodness of fit (Fig-
ure 1D; Table S1 for parameter estimates and pseudo-R2 of
each model), we determined that the Simulation-RLsRPE+sAPE
model provided the best fit to the data. First, all three Simula-
tion-RL models fitted the actual behavior significantly better
than the simulation-free RL model (p < 0.0001, one-tailed paired
t test over the distributions of AIC values across subjects). This
broadly supports the notion that subjects took account of and
internally simulated the other’s decision-making processes in
the Other task. Second, the Simulation-RLsRPE+sAPE model
(S-RLsRPE+sAPE model hereafter) fitted the behavior significantly
better than the Simulation-RL models using either of the predic-
tion errors alone (p < 0.01, one-tailed paired t test over the AIC
distributions; Figure 1D). This observation was also supported
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when examined using other types of statistics: AIC values,
a Bayesian comparison using the so-called Bayesian exceed-
ance probability, and the fit of amodel of all the subjects together
(Table S2). The S-RLsRPE+sAPE model successfully predicted
>90% (0.9309 ± 0.0066) of the subjects’ choices. Furthermore,
as expected from the behavioral results summarized above,
only three subjects (3/36) exhibited risk-averse behavior when
fit to the S-RLsRPE+sAPE model.
In separate analyses, we confirmed that the sRPE and sAPE

provided different information, and that both had an influence
on the subjects’ predictions of the other’s choices. First, both
errors (and also their learning rates), as well as the information
of the other’s actions and choices, were mostly uncorrelated
(Supplemental Information), indicating that separate contribu-
tions of the two errors are possible. Second, the subjects’ choice
behavior was found to change in relation to the sAPE (large or
small) and the sRPE (positive or negative) in the previous trials
and not to the combination of both (two-way repeated-measures
ANOVA: p < 0.001 for the sRPE main effect, p < 0.001 for the
sAPE main effect, p = 0.482 for their interaction; Figure S1B).
This result provides behavioral evidence for separate contribu-
tions of the two errors to the subjects’ learning.
We next compared the S-RLsRPE+sAPE model to several of its

variants. We first examined whether including risk parameters
at different levels affected the above finding. The original
S-RLsRPE+sAPE model included the risk parameter only in the
simulated-other’s level (computing the simulated-other’s choice
probability), but it is possible to consider two other variants
of this model: one including a risk parameter only in the
subject’s level (computing the subject’s choice probability) and
another including risk parameters in the subject’s and simu-
lated-other’s levels. Goodness-of-fit comparisons of the original
S-RLsRPE+sAPE model with these variants supported the use
of the original model (see the Supplemental Information). We
then examined the performance of another type of variant,
utilized in a recent study (Burke et al., 2010), that used the
sAPE not for learning but for biasing the subject’s choices
in the next trial (Supplemental Experimental Procedures).
Comparison of goodness of fit between this variant and the
original S-RLsRPE+sAPE model supported the superior fit of the
original model (p < 0.001, one-tailed paired t test). These
results suggest that the subjects learned to simulate the other’s
value-based decision-making processes using both the sRPE
and sAPE.

Neural Signals Reflecting the Simulated-Other’s Reward
and Action Prediction Errors
We next analyzed fMRI data to investigate which brain regions
were involved in simulating the other’s decision making
processes. Based on the fit of the S-RLsRPE+sAPE model to the
behavior in the Other task, we generated regressor variables of
interest, including the subject’s reward probability at the time
of decision (DECISION phase; Materials and Methods) and
both the sRPE and sAPE at the time of outcome (OUTCOME
phase), and entered them into our whole-brain regression anal-
ysis. Similarly, fMRI data from the Control task were analyzed
using regressor variables based on the fit of the RL model to
the subjects’ behavior.

BOLD responses that significantly correlated with the sRPE
were found only in the bilateral ventromedial prefrontal cortex
(vmPFC; p < 0.05, corrected; Figure 2A; Table 1). When these
signals were extracted using the leave-one-out cross-validation
procedure to provide an independent criterion for region of
interest (ROI) selection and thus ensure statistical validity
(Kriegeskorte et al., 2009), and then binned according to the
sRPE magnitude, the signals increased as the error increased
(Spearman’s correlation coefficient: 0.178, p < 0.05; Figure 2B).
As expected for the sRPE, vmPFC signals were found to be posi-
tively correlated with the other’s outcome and negatively corre-
lated with the simulated-other’s reward probability (Figure S2A).
As activity in the vmPFC is often broadly correlated with value
signals and ‘‘self’’ reward prediction error (Berns et al., 2001;
O’Doherty et al., 2007), we further confirmed that the vmPFC
signals truly corresponded to the sRPE and were not induced
by other variables. The vmPFC signals remained significantly
correlated with the sRPE (p < 0.05, corrected) even when the
following potential confounders were added to our regression
analysis: the simulated-other’s reward probability, the simu-
lated-other’s value for the stimulus chosen by the other as well
as by the subject, and the subject’s own reward prediction error
and reward probability. The vmPFC signals also remained signif-
icant even when the regressor variable of the sRPE was first
orthogonalized to the sAPE and then included in the regression
analysis (p < 0.05, corrected). Finally, instead of using the original
sRPE, we used the error with the reward magnitude (i.e., the
sRPEmultiplied by the reward magnitude of the stimulus chosen
by the other in each trial) as a regressor in whole-brain analysis.
The vmPFC was the only brain area showing activity that was
significantly correlated with this error (p < 0.05, corrected). These
results suggest that activity in the vmPFC exclusively contained
information about the sRPE.
The sAPE was significantly correlated with changes in BOLD

signals in the right dorsomedial prefrontal cortex (dmPFC;
p < 0.05, corrected), the right dorsolateral prefrontal cortex
(dlPFC; p < 0.05, corrected; Figure 2C), and several other regions
(Table 1). The dmPFC/dlPFC activity continued to be signifi-
cantly correlated with the action prediction error, even after
cross-validation (dmPFC: 0.200, p < 0.05; dlPFC: 0.248, p <
0.05; Figure 2D). The dmPFC/dlPFC signals remained significant
when potential confounders (the simulated-other’s reward prob-
ability of the stimulus chosen by the other as well as by the
subject) were added to the regression analyses (p < 0.05, cor-
rected) or when the regressor variable of the sAPE was first
orthogonalized to the sRPE and then included in the regression
analysis (p < 0.05, corrected). We also confirmed significant
activation in the dmPFC/dlPFC (p < 0.05, corrected) even
when the action prediction error at the action level was used
as a regressor variable instead of the error at the value level.
The dmPFC/dlPFC areas with significant activation considerably
overlapped with the areas originally associated with the signifi-
cant activation, using the error at the value level (Figure S2B).
Given these findings, we further hypothesized that if the

neuronal activity in these brain regions encodes the sRPE and
sAPE, then any variability in these signals across subjects should
affect their simulation learning and should therefore be reflected
in the variation in updating the simulated-other’s value using
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these errors. In other words, subjects with larger or smaller
neural signals in a ROI should exhibit larger or smaller behavioral
learning effects due to the error (i.e., display larger or smaller
learning rates associated with each error).

To test this hypothesis, we investigated the subjects’ group-
level correlations (Figure 3). Individual differences in the vmPFC
BOLD signals of the sRPE (measured by the estimated magni-
tude of the error’s regressor’s coefficient; called the ‘‘effect
size’’) were correlated with individual differences in the learning
rates of the sRPE (determined by the fit of the S-RLsRPE+sAPE
model to the behavioral data), while those in the dmPFC/dlPFC
BOLD signals of the sAPE were correlated with those in the
learning rates of the sAPE. First, the vmPFC activity was signifi-
cantly correlated with the learning rate of the sRPE (Figure 3A,
left; Spearman’s r = 0.360, p < 0.05), even though the explained
variance was relatively small (measured by the square of
Pearson’s correlation coefficient, r2 = 0.124). We conducted
two additional analyses to guard against potential subject
outliers that may have compounded the original correlation anal-
ysis. The correlation remained significant evenwhen removing all
outliers by a Jackknife outlier detection method (r = 0.447,
p < 0.005) or using the robust correlation coefficient (r0 = 0.346,
p < 0.05) (Supplemental Experimental Procedures). Thus, the
observed modulation of vmPFC activity lends correlative
support to our hypothesis that variations in the vmPFC signals
(putative signals of the sRPE) are associated with the behavioral
variability caused by learning using the sRPE across subjects.

Second, the dmPFC/dlPFC activity was significantly correlated
with the learning rate of the sAPE (Figure 3B, r = 0.330,
p < 0.05; r2 = 0.140; and Figure 3C, r = 0.294, p < 0.05;
r2 = 0.230). The correlations remained significant after removing
the outliers (dmPFC, r = 0.553, p < 0.0005; dlPFC, r = 0.382,
p < 0.05) or using the robust correlation coefficient (dmPFC,
r0 = 0.377, p < 0.005; dlPFC, r0 = 0.478, p < 0.01). These results
support our hypothesis that the variation in the dmPFC and
dlPFC signals (putative signals of the sAPE) is associated with
the behavioral variability caused by learning using the sAPE
across subjects.

Shared Representations of Value-Based Decision
Making for the Self and Simulated-Other
We next investigated whether the pattern of vmPFC activity
was shared between the self and simulated-other’s decision
processes in two aspects. First, the vmPFC region was the
only region modulated by the sRPE in the Other task. The
sRPE was based on simulating the other’s process in a social
setting, generated in reference to the simulated-other’s reward
probability that they estimated to substitute for the other’s
hidden variable. We were then interested in knowing whether
the same vmPFC region contained signals for the subject’s
own rewardprediction error during theControl task in a nonsocial
setting without the simulation. Second, at the time of decision in
the Other task, subjects made their choices to indicate their
predictions of the other’s choices based on the simulation,

Figure 2. Neural Activity Correlated with the Simulated-Other’s Reward and Action Prediction Errors
(A) Neural activity in the vmPFC correlated significantly with the magnitude of the sRPE at the time of outcome (Talairach coordinates: x = 0, y = 53, z = 4). The

maps in (A) and (C) are thresholded at p < 0.005, uncorrected for display.

(B) Crossvalidated, mean percent changes in the BOLD signals in the vmPFC (across subjects, n = 36; error bars = ± SEM; 7–9 s after the onset of the outcome)

during trials in which the sRPE was low, medium, or high (the 33rd, 66th, or 100th percentiles, respectively).

(C) Neural activity in the dmPFC (x = 6, y = 14, z = 52) and dlPFC (x = 45, y = 11, z = 43) correlated significantly with the magnitude of the sAPE at the time of

outcome (left: sagittal view; right: axial view).

(D) Crossvalidated, mean percent changes in the BOLD signals in the dmPFC and dlPFC (7–9 s after the onset of the outcome) during trials in which the sAPEwas

low, medium, or high.
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whereas in the Control task, they made their choices to obtain
the best outcome for themselves without the simulation. Thus,
we were also interested in whether the same vmPFC region con-
tained signals for the subjects’ decision variables in both types
of decisions. To address these issues, we examined the neural
correlates of these variables in whole-brain analyses during
both tasks and then conducted cross-validating ROI analyses.
We found that the vmPFCwasmodulated by signals related to

the subject’s own reward probability in the Other task. Whole-
brain analysis during the Other task identified BOLD signals in
several brain regions, including the vmPFC (p < 0.05, corrected;
Figure 4A), that were significantly modulated by the subject’s
reward probability (for the stimulus chosen by the subject) at
the time of decision (Table 1). The subject’s reward probability
is the decision variable closest to their choices, as it is the
farthest downstream in the hypothesized computational
processes for generating their choices, but it is also based on
simulating the other’s decision-making processes, in particular,
the simulated-other’s reward probability (Figure S1A). To deter-
mine whether the activation of the vmPFC that was significantly
modulated by the subject’s reward probability was compounded
by, or possibly rather due to, the simulated-other’s reward
probability, we conducted two additional whole-brain analyses:
when the simulated-other’s reward probability (for the stimulus
chosen by the subject) was added to the regression analysis
as a potential confounder and when the regressor variable
of the subject’s probability was first orthogonalized to the
simulated-other’s reward probability and then included in the
regression analysis together with the simulated-other’s reward
probability. In both cases, vmPFC activation remained signifi-

cantly modulated by the subject’s reward probability (p < 0.05,
corrected). These results indicate that at the time of decision
during the Other task, vmPFC activation was significantly modu-
lated by the subject’s reward probability.
For comparison, the significant vmPFC signals related to the

sRPE are also shown in Figure 4A. Here, we emphasize that
the sRPE was not the subject’s own reward prediction error
(the difference between the subject’s own outcome and his/her
own reward probability) during the Other task. Indeed, no region
was significantly activated by the subject’s own reward predic-
tion error during the Other task. This observation was confirmed
by an additional whole-brain analysis that was conducted in the
same way as the original analysis, except that we added the
regressor variable for the subject’s own reward prediction error
and removed the regressors for the sRPE and sAPE.
Whole-brain analysis during the Control task revealed signifi-

cant modulation of vmPFC activity (p < 0.05, corrected) by the
reward probability (for the stimulus chosen by the subject) at
the time of the decision and the reward prediction error at the
time of the outcome (Figure 4B; Table 2). These activities
remained significant (p < 0.05, corrected) when the following
potential confounders were added to the analysis: the reward
magnitude of the chosen stimulus with the reward probability
and the value and reward probabilities of the chosen stimulus
with the reward prediction error.
We next employed four crossvalidating ROI analyses to inves-

tigate whether the same vmPFC region contained signals that
were significantly modulated by all four of the variables of
interest: the subject’s own reward probability (RP) and the
sRPE in the Other task (Figure 4A) and the subject’s own RP

Table 1. Areas Exhibiting Significant Changes in BOLD Signals during the Other Task

Variable Region Hemi BA x y z t-statistic p Value

Simulated-other’s

reward prediction error

vmPFCa R/L 10/32 0 53 4 4.45 0.000083

Simulated-other’s

action prediction error

dlPFC (inferior frontal gyrus) R 44 45 11 43 4.84 0.000026

dmPFC (medial frontal gyrus/superior frontal gyrus) R 8 6 14 52 4.73 0.000036

TPJ/pSTS (inferior parietal lobule/supramarginal

gyrus/angular gyrus)

R 39/40 39 !55 37 4.54 0.000064

L 39/40 !45 !52 37 4.08 0.000246

Inferior frontal gyrus/superior temporal gyrus R 47/38 39 20 !5 5.08 0.000013

Thalamus R 6 !19 !2 4.88 0.000023

Lingual gyrus L 18 12 !73 !8 4.30 0.000131

Reward probability vmPFC R 10/32 3 56 4 6.16 0.000000

Postcentral gyrus/superior temporal gyrus L 2/22/42 !54 !28 16 6.03 0.000001

Postcentral gyrus/superior temporal gyrus R 2/22/42 54 !22 19 5.69 0.000002

Postcentral gyrus R 1 36 !19 55 5.77 0.000002

Cingulate gyrus L 31 !12 !1 34 4.42 0.000092

Insula L !39 !13 4 4.81 0.000028

Activated clusters observed following whole-brain analysis (p < 0.05, corrected) of fMRI. The stereotaxic coordinates are in accordance with Talairach

space, and the anatomical terms in the Region column are given accordingly. In the far right column, uncorrected p values at the peak of each locus are

shown. The regions of interest discussed in the text are shown in bold. vmPFC: ventromedial prefrontal cortex, dlPFC, dorsolateral prefrontal cortex;
dmPFC, dorsomedial prefrontal cortex; Hemi, hemisphere; BA, Brodmann area.
aThe vmPFC region referred to here and in Table 2 is in the vicinity of cluster 2 referred to by Beckmann and colleagues (Beckmann et al., 2009;

Rushworth et al., 2011). Upon a closer examination, the locus of the activated vmPFC region is actually located between the BA 10 and 32, and

resembles cluster 2, which is also known as area 14 m (Mackey and Petrides, 2010).
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and reward prediction error (RPE) in the Control task (Figure 4B).
Whole-brain analyses defined an ROI in the vmPFC for each of
these variables. We then examined whether the neural activity
in a given ROI was significantly modulated by any or all of the
other three variables. Indeed, each of the given ROIs in the
vmPFC contained signals that were significantly modulated by
each of the variables defining the other three ROIs (either p <
0.05 or p < 0.005; Figure 4C). We also conducted the same anal-
ysis using a Gaussian filter (full width at half-maximum (FWHM) =
6 mm) for spatial smoothing during image data preprocessing
that was narrower than the original filter (FWHM = 8 mm). In
this case, three of the variables, not RP in the Control task,
had significant activation in the vmPFC (p < 0.05, corrected;
with RP in the Control task, cluster size = 21, which was less
than the 33 required for a corrected p < 0.05 with the narrower
Gaussian filter). However, when the ROI for RP in the Control
task was defined under the liberal threshold, we again observed
that the activity in a given ROI of one variable was significantly
modulated by each of the other three variables (p < 0.05). The
observation in the original analysis remained true (p < 0.05)
even if we used an orthogonalized variable in the ROI analysis
(see the Supplemental Information). These results indicate that
the same region of the vmPFC contains neural signals for the
subjects’ decisions in both the Control and Other tasks, as well
as signals for learning from reward prediction errors either with
or without simulation.

DISCUSSION

We examined behavior in a choice paradigm that to our knowl-
edge is new, in which subjects must learn and predict another’s
value-based decisions. As this paradigm involved observing the
other without directly interacting with them, we were able to
focus on the most basic form of simulation learning (Amodio
and Frith, 2006; Frith and Frith, 1999; Mitchell, 2009). Collec-
tively, our results support the idea of simulation of the other’s

process by direct recruitment of one’s own process, but they
also suggest a critical revision to this direct recruitment hypoth-
esis. We found that subjects simultaneously tracked two distinct
prediction error signals in simulation learning: the simulated-
other’s reward and action prediction errors, sRPE and sAPE,
respectively. The sRPE significantly modulated signals only in
the vmPFC, indicating a prominent role of this area in simulation
learning by direct recruitment. However, we also found that
simulation learning utilized an accessory learning signal: the
sAPE with neural representation in the dmPFC/dlPFC.

Shared Representation between Self
and Simulated-Other
Our findings indicate that the vmPFC is a canonical resource for
a shared representation between the self and the simulated-
other in value-based decision making. By employing a within-
subjects design for the Control and Other tasks, the present
study provides, to our knowledge, the first direct evidence that
vmPFC is the area in which representations of reward prediction
error are shared between the self and the simulated-other.
Subjects used the sRPE to learn the other’s hidden variable
and the vmPFC was the only brain region with BOLD signals
that were significantly modulated by both the subject’s reward
prediction error in the Control task and the subject’s sRPE in
the Other task. Moreover, our findings also provide direct
evidence that the same vmPFC region is critical for the subject’s
decisions, whether or not the other’s process was simulated. In
both tasks, vmPFC signals were significantly modulated by the
subject’s decision variable (the subject’s reward probability) at
the time their decisions weremade. Mentalizing by direct recruit-
ment requires the same neural circuitry for shared representa-
tions between the self and the simulated-other. Even apart from
direct recruitment, shared representations between the self
and the other are considered to play an important role in other
forms of social cognition, such as empathy. Our findings, with
specific roles described for making and learning value-based

Figure 3. Relationship of Behavioral Variability by Learning Signals with Neural Variability in the vmPFC and the dmPFC/dlPFC
(A) Subject-group level correlation of vmPFC activity for the sRPE with the behavioral effect of the sRPE (the error’s learning rate, hsRPE ). vmPFC activity is

indicated by the error’s effect size averaged over the vmPFC region. Open circles denote potential outlier data points (subject) using Jackknife outlier detection.

(B) Correlation of dmPFC activity for the sAPE with the behavioral effect of the sAPE ðhsAPEÞ.
(C) Correlation of dlPFC activity for the sAPE with the behavioral effect of the sAPE ðhsAPEÞ.
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decisions, indicate that vmPFC belongs to areas for shared
representations in various cognitive domains (Decety and
Sommerville, 2003; Keysers and Gazzola, 2007; Mobbs et al.,
2009; Rizzolatti and Sinigaglia, 2010; Singer et al., 2004).
For encoding learning signals, the vmPFC is likely more adap-

tive than the ventral striatum. In contrast to the vmPFC signals,
signals in the ventral striatum were significantly modulated
only by the subject’s own reward prediction error in the Control
task (Figure S3; Table 2). The vmPFCwas preferentially recruited
to simulate the other’s process in this study, concordant with
the general notion that the vmPFC may encode signals related
to reward prediction error when internal models are involved
(O’Doherty et al., 2007). The vmPFC may be more sensitive to
task demands. During the Other task, no area was significantly

modulated by the subject’s own reward prediction error. This
might be simply due to a limitation in the task design, as the
fixed reward size for subjects might have limited detection of
reward prediction error. Another aspect, however, is that the
subject’s own reward prediction error was not as useful as the
sRPE for learning to predict the other’s choices in this task.
Also, the vmPFC may be specifically recruited when subjects
used the other’s outcomes for learning, as in the Other task,
rather than when they vicariously appreciated the other’s
outcomes. The activity in the ventral striatum might be evoked
only when the other’s outcomes aremore ‘‘personal’’ to subjects
(Moll et al., 2006), e.g., when they are comparing their own
outcomes to the other’s outcomes (Fliessbach et al., 2007;
Rilling et al., 2002) or when there are similarities between their

Figure 4. Shared Representations for Self and Other in the vmPFC
(A) (Left) vmPFC signals in the Other task significantly modulated by the subjects’ reward probability (RP) at the time of decision (x = 3, y = 56, z = 4; p < 0.05,

corrected). (Right) The sRPE (x = 0, y = 53, z = 4; p < 0.05, corrected) for the signal shown in Figure 2A. The maps in (A) and (B) are thresholded at p < 0.005,

uncorrected for display.

(B) (Left) vmPFC signals in the Control task significantly modulated by the subjects’ reward probability (RP) at the time of DECISION (x =!6, y = 56, z = 1; p < 0.05,

corrected). (Right) The subjects’ reward prediction error at the time of OUTCOME (x = 6, y = 53, z = !2; p < 0.05, corrected).

(C) Four ROI analyses showing the extent to which the vmPFC signals represent task-relevant information in the Other (red) and Control (blue) tasks, i.e., RP and

sRPE in the Other task and RP and RPE in the Control task. Each plot is labeled with the variable that defined the ROI examined in the vmPFC; the effect sizes of

the three other signals on the given ROI are plotted (see symbol legend at right). Points represent the mean (±SEM). *p < 0.05, **p < 0.005.

Table 2. Areas Exhibiting Significant Changes in BOLD Signals during the Control Task

Variable Region Hemi BA x y z t-statistic p Value

Reward prediction error vmPFC R 10/32 6 53 !2 3.95 0.000360

ventral striatum R (local registration) 4.48 0.000076

Reward probability vmPFC L 10/32 !6 56 1 4.11 0.000224

Insula R 45 !16 7 4.81 0.000028

Activated clusters observed following whole-brain analysis (p < 0.05, corrected) of fMRI. Table format is the same as for Table 1. For local registration,

see the legend to Figure S3.
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own and the other’s personal characteristics (Mobbs et al.,
2009).

The sRPE was a specific form of reward prediction error
related to the other, made in reference to the simulated-other
and used for learning their hidden variables. Different forms of
the other’s reward prediction error also modulated activity in
the vmPFC. Activity in the vmPFCwas correlatedwith an ‘‘obser-
vational’’ reward prediction error (the difference between the
other’s stimulus choice outcome and the subject’s value of the
stimulus) (Burke et al., 2010; Cooper et al., 2011). This error indi-
cated which stimulus was more likely to be rewarding to
subjects, whereas in the study presented here, the sRPE indi-
cated which stimulus was more likely to be rewarding to the
other. vmPFC signals have also been reported to be modulated
by different perceptions of the other’s intentions (Cooper et al.,
2010). An interesting avenue for future research is to deepen
our understanding of the relationship between, and use of,
different types of vicarious reward prediction errors involved in
forms of fictive or counterfactual learning (Behrens et al., 2008;
Boorman et al., 2011; Hayden et al., 2009; Lohrenz et al., 2007).

Refinement of Simulation Learning: Action-Prediction
Error
Our findings demonstrate that during simulation, humans use
another learning signal—the sAPE—tomodel the other’s internal
variables. This error was entirely unexpected based on the direct
recruitment hypothesis, and it indicates that simulation is
dynamically refined during learning using observations of the
other’s choices, thus also rejecting the stronger hypothesis.

The sAPE significantly modulated BOLD signals in the
dmPFC/dlPFC and several other areas (Table 1), but the sRPE
did not. This activation pattern suggests that these areas may
have a particular role in utilizing the other’s choices rather than
the other’s outcomes (Amodio and Frith, 2006). This view is
convergent with earlier studies in a social context, in which
subjects considered the other’s behaviors, choices, or inten-
tions, but not necessarily their outcomes (Barraclough et al.,
2004; Hampton et al., 2008; Izuma et al., 2008; Mitchell et al.,
2006; Yoshida et al., 2010, 2011), and also with studies in nonso-
cial settings (Gläscher et al., 2010; Li et al., 2011; Rushworth,
2008). Among the other areas, the temporoparietal junction
and posterior superior temporal sulcus (TPJ/pSTS) were note-
worthy. Our results support a role for the TPJ/pSTS in utilizing
the other’s choices, consistent with previous studies using RL
paradigms in social settings (Behrens et al., 2008; Hampton
et al., 2008; Haruno and Kawato, 2009).

Our findings that the dmPFC/dlPFC and TPJ/pSTS were
significantly activated by the sAPE in both the value and action
levels provide an important twist on the distinction between
action and outcome encoding or between action and outcome
monitoring (Amodio and Frith, 2006). The signals in those areas
represented a result of action monitoring, but were also in
a form that was immediately available for learning outcome
expectation (the simulated-other’s reward probability). It is
intriguing to speculate that all of the processes involved in this
error, from generating (in the action level) and transforming
(from the action to value level) to representing the error as
a learning signal for valuation (in the value level), may occur

simultaneously in these areas. This would allow the error to be
flexibly integrated with other types of processing, thereby
leading to better andmore efficient learning and decisionmaking
(Alexander and Brown, 2011; Hayden et al., 2011).
The sAPE was a specific form of action prediction error related

to the other, which was generated in reference to the simulated-
other’s choice probability and used to learn the simulated-
other’s variable. Activity in the dmPFC/dlPFC can also be
modulated by different forms of action prediction error related
to the other and to improvement of the subject’s own valuation
(Behrens et al., 2008; Burke et al., 2010). Burke et al. (2010) found
that activity in the dlPFC was modulated by an observational
action prediction error (the difference between the other’s actual
stimulus choice and the subject’s own choice probability).
Behrens et al. (2008) found that activity in the dmPFC was
significantly modulated by the ‘‘confederate prediction error’’
(the difference between the actual and expected fidelity of the
confederate). Their error was used to learn the probability that
a confederate was lying in parallel to, but separate from, the
learning of the subject’s stimulus-reward probability. At the
time of decision, subjects could utilize the confederate-lying
probability to improve their own decisions. In contrast, in our
Other task, subjects needed to predict the other’s choices.
One possible interpretation is that dmPFC and dlPFC differen-
tially utilize the other’s action prediction errors for learning,
drawing on different forms of the other’s action expectation
and/or frames of reference, depending on task demands (Baum-
gartner et al., 2009; Cooper et al., 2010; de Bruijn et al., 2009;
Huettel et al., 2006).
Our findings support a posterior-to-anterior axis interpretation

of the dmPFC signals with an increasing order of abstractness to
represent the other’s internal variable (Amodio and Frith, 2006;
Mitchell et al., 2006). The sAPE was in reference to the other’s
actual choices, whereas the confederate prediction error was
in reference to the truth of the other’s communicative intentions
rather than their choices. Correspondingly, a comparison of the
dmPFC regions activated in this study with those in Behrens
et al. (2008) suggests that the dmPFC region identified in this
study was slightly posterior to the region they identified. Further-
more, our findings also support an axis interpretation between
the vmPFC and dmPFC. The sRPE is a more ‘‘inner,’’ and thus
more abstract, variable for simulation than the sAPE. While the
sRPE and sAPE were generated with the simulated-other’s
reward and choice probability, respectively, this choice proba-
bility was generated in each trial by using the reward probability.
Altogether, we propose that the sAPE is a general, critical

component for simulation learning. The sAPE provides an addi-
tional, but also ‘‘natural,’’ learning signal that could arise from
simulation by direct recruitment, as it was readily generated
from the simulated-other’s choice probability given the subject’s
observation of the other’s choices. This error should be useful for
refining the learning of the other’s hidden variables, particularly if
the other behaves differently from the way one would expect for
oneself, i.e., the prediction made by direct recruitment simula-
tion (Mitchell et al., 2006). As such, we consider this error and
the associated pattern of neural activation to be an accessory
signal to the core simulation process of valuation occurring in
the vmPFC, which further suggests a more general hierarchy of
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learning signals in simulation apart from and beyond the sAPE.
As the other’s choice behavior in this study was only related to
a specific personality or psychological isotype, being risk
neutral, it will be interesting to see whether and how the sAPE
is modified to facilitate learning about the other depending on
different personality or psychological isotypes of the other.
Also, in this study, because we chose to investigate the sAPE
as a general signal, learning about the nature of the other’s risk
behavior or risk parameters in our model was treated as
secondary, being fixed in all trials. However, subjects might
have learned the other’s risk parameter and/or adjusted their
own risk parameter over the course of the trials. How these types
of learning complement simulation learning examined in the
present study shown here will require further investigation.
Together, we demonstrate that simulation requires distinct

prefrontal circuits to learn the other’s valuation process by direct
recruitment and to refine the overall learning trajectory by
tracking the other’s behavioral variation. Because our approach
used a fundamental form of simulation learning, we expect that
our findings may be broadly relevant to modeling and predicting
the behavior of others in many domains of cognition, including
higher level mentalizing in more complex tasks involving social
interactions, recursive reasoning, and/or different task goals.
We propose that the signals and computations underlying higher
level mentalizing in complex social interactions might be built
upon those identified in the present study. It remains to be deter-
mined how the simulated-other’s reward and action prediction
error signals are utilized and modified when task complexity is
increased. In this regard, we suggest that the simulation process
and the associated neural circuits identified in this study can be
conceptualized as a cognitive scaffold upon which multiple
context-dependent mentalizing signals may be recruited as
available learning signals and may thus contribute to prediction,
depending on the subject’s goals in the social environment.

EXPERIMENTAL PROCEDURES

Weprovide amore comprehensive description of thematerials andmethods in

the Supplemental Experimental Procedures.

Subjects
Thirty-nine healthy, normal subjects participated in the fMRI experiment.

Subjects received monetary rewards proportional to the points they earned

in four test sessions (two fMRI scan sessions, from which behavioral and

imaging data are reported in the main text, and two test sessions not involving

fMRI, for which data are not shown) in addition to a base participation fee. After

excluding three subjects based on their outlier choice behaviors, the remaining

36 subjects were used for subsequent behavioral and fMRI data analyses.

A separate behavioral experiment involved 24 normal subjects, and excluding

two outlier subjects, the remaining 22 subjects were used for the final analysis

(Figure 1C). All subjects gave their informedwritten consent, and the studywas

approved by RIKEN’s Third Research Ethics Committee.

Experimental Tasks
Two tasks, the Control and Other tasks, were conducted (Figure 1A). The

Control task was a one-armed bandit task (Behrens et al., 2007). The two

stimuli with randomly assigned reward magnitudes, indicated by numbers in

their centers, were randomly positioned at the left or right of the fixation point.

In every trial, the reward magnitudes were randomly sampled, independently

of the stimuli, but with an additional constraint that the same stimulus was

not assigned the higher magnitude in three successive trials; this constraint

was introduced, in addition to reward magnitude randomization, to further

ensure that subjects did not repeatedly choose the same stimulus (see Fig-

ure S1D for control analyses). After subjects made their choice, the chosen

stimulus was immediately highlighted by a gray frame. Later, the rewarded

stimulus was revealed in the center of the screen. Subjects were not informed

of the probability, but were instructed that the reward probabilities were inde-

pendent of the reward magnitudes.

In the Other task, subjects predicted the choice of another person. From the

CUE to the ISI phase, the images on the screen were identical to those in

the Control task in terms of presentation. However, the two stimuli presented

in the CUE were generated for the other person performing the Control task.

The subjects’ prediction of the choice made by the other was immediately

highlighted by a gray frame. In the OUTCOME, the other’s actual choice was

highlighted by a red frame, and the rewarded stimulus for the other was indi-

cated in the center. When the subjects’ predicted choice matched the other’s

actual choice, they earned a fixed reward. The RL model generated the

choices of the other on a risk-neutral basis (for the fMRI experiment), so that

the choices generated by the model approximately mimicked average (risk-

neutral) human behavior, allowing us to use the same type of the other’s

behavior for all subjects (see Figure S1C for a separate behavioral analysis

of this approach).

For the experiment in the MRI scanner, two tasks, Control and Other, were

employed. Three conditions, one Control and two Others, were used in a

separate behavioral experiment (Figure 1C). The settings for the Control and

‘‘Other I’’ task were the same as in the fMRI experiment, but in the ‘‘Other II’’

task, a risk-averse RL model was used to generate the other’s choices.

Behavioral Analysis and Computational Models Fitted to Behavior
Several computational models, based on and modified from the Q learning

model (Sutton and Barto, 1998), were fit to the subjects’ choice behaviors in

both tasks. In the Control task, the RL model, being risk neutral, constructed

Q values of both stimuli; the value of a stimulus was the product of the stimulus’

reward probability, pðAÞ (for stimulus A; the following description is made for

this case), and the reward magnitude of the stimulus in a given trial, RðAÞ,

QA =pðAÞRðAÞ: (1)

To account for possible risk behavior of the subjects, we followed the

approach of Behrens et al. (2007) by using a simple nonlinear function (see

the Supplemental Information for more details and for a control analysis of

the nonlinear function). The choice probability is given by qðAÞ= fðQA !QBÞ,
where f is a sigmoidal function. The reward prediction error was used to

update the stimulus’ reward probability (see the Supplemental Information

for a control analysis),

d= r ! pðAÞ; (2)

where r is the reward outcome (1 if stimulus A is rewarded and 0 otherwise).

The reward probability was updated using pðAÞ)pðAÞ+ hd.

In the Other task, the S-RLsRPE+sAPE model computed the subject’s choice

probability using qðAÞ= fðQA !QBÞ; here, the value of a stimulus is the product

of the subject’s fixed reward outcome and their reward probability based on

simulating the other’s decision making, which is equivalent to the simulated-

other’s choice probability: qo(A) = f(QO(A) ! QO(B)), wherein the other’s value

of a stimulus is the product of the other’s reward magnitude of the stimulus

and the simulated-other’s reward probability, pOðAÞ. When the outcome for

the other ðrOÞ was revealed, the S-RLsRPE+sAPE model updated the simu-

lated-other’s reward probability, using both the sRPE and the sAPE,

pOðAÞ)pOðAÞ+hsRPEdOðAÞ+ hsAPEsOðAÞ; (3)

where the two h’s indicate the respective learning rates. The sRPE was

given by

doðAÞ= ro ! poðAÞ: (4)

The sAPE was defined in the value level, being comparable to the sRPE.

After being generated first in the action level,

s0
OðAÞ= IAðAÞ ! qOðAÞ= 1! qOðAÞ; (5)
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the sAPEwas obtained by a variational transformation, pulled back to the value

level,

sOðAÞ= s0
O

ðAÞ
K

; (6)

(see the Supplemental Information for the algebraic expression of K). The two

other simulation-RL models only used one of the two prediction errors. The

simulation-free RL model is described in the Supplemental Information.

We used a maximum-likelihood approach to fit the models to the individual

subject’s behaviors and AIC to compare their goodness of fit, taking into

account the different numbers of the models’ parameters. For a given model’s

fit to each subject’s behavior in a task, the inclusion of the risk parameter was

determined using the AIC value to compare the fit by two variants of the given

model, with or without including the risk parameter.

fMRI Acquisition and Analysis
fMRI images were collected using a 4 T MRI system (Agilient Inc., Santa Clara,

CA). BOLD signals were measured using a two-shot EPI sequence. High- and

low-resolution whole-brain anatomical images were acquired using a T1-

weighted 3D FLASH pulse sequence. All images were analyzed using Brain

Voyager QX 2.1 (Brain Innovation B.V., Maastricht, The Netherlands). Func-

tional images were preprocessed, including spatial smoothing with a Gaussian

filter (FWHM = 8 mm). Anatomical images were transformed into the standard

Talairach space (TAL) and functional imageswere registered to high-resolution

anatomical images. All activations were reported based on the TAL, except for

the activation in the ventral striatum reported in Figure S3 (see legend).

We employed model-based analysis to analyze the BOLD signals. The main

variables of interest as the regressors for our regression analyses were, for the

Control task, the reward probability of the stimulus chosen in the DECISION

period (defined as the period from the onset of CUE until subjects made their

responses in the RESPONSE period) and the reward prediction error in the

OUTCOME period. For the Other task, the main variables of interest were

the subject’s reward probability for the stimulus chosen in the DECISION

period, and the sRPE and sAPE in the OUTCOME period. Random-effects

analysis was employed using a one-tailed t test. Significant BOLD signals

were reported based on corrected p values (p < 0.05) using a family-wise error

for multiple comparison corrections (cluster-level inference). For cross-vali-

dated percent changes in the BOLD signals (Figures 2B and 2D), we followed

a previously described leave-one-out procedure (Gläscher et al., 2010). For the

correlation analysis (Figure 3), we calculated Spearman’s correlation coeffi-

cient and tested its statistical significance using a one-tailed t test given our

hypothesis of positive correlation (see the Supplemental Information for two

additional analyses).

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures, two tables, and Supple-

mental Experimental Procedures and can be found with this article online at

doi:10.1016/j.neuron.2012.04.030.
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Gläscher, J., Daw, N., Dayan, P., and O’Doherty, J.P. (2010). States versus

rewards: dissociable neural prediction error signals underlying model-based

and model-free reinforcement learning. Neuron 66, 585–595.

Glimcher, P.W., and Rustichini, A. (2004). Neuroeconomics: the consilience of

brain and decision. Science 306, 447–452.

Neuron

Simulation Learning of Others’ Decisions

1136 Neuron 74, 1125–1137, June 21, 2012 ª2012 Elsevier Inc.

http://dx.doi.org/doi:10.1016/j.neuron.2012.04.030


Hampton, A.N., Bossaerts, P., and O’Doherty, J.P. (2008). Neural correlates of

mentalizing-related computations during strategic interactions in humans.

Proc. Natl. Acad. Sci. USA 105, 6741–6746.

Haruno, M., and Kawato, M. (2009). Activity in the superior temporal sulcus

highlights learning competence in an interaction game. J. Neurosci. 29,

4542–4547.

Hayden, B.Y., Pearson, J.M., and Platt, M.L. (2009). Fictive reward signals in

the anterior cingulate cortex. Science 324, 948–950.

Hayden, B.Y., Heilbronner, S.R., Pearson, J.M., and Platt, M.L. (2011).

Surprise signals in anterior cingulate cortex: neuronal encoding of unsigned

reward prediction errors driving adjustment in behavior. J. Neurosci. 31,

4178–4187.

Hikosaka, O., Nakamura, K., and Nakahara, H. (2006). Basal ganglia orient

eyes to reward. J. Neurophysiol. 95, 567–584.

Huettel, S.A., Stowe, C.J., Gordon, E.M., Warner, B.T., and Platt, M.L. (2006).

Neural signatures of economic preferences for risk and ambiguity. Neuron 49,

765–775.

Izuma, K., Saito, D.N., and Sadato, N. (2008). Processing of social and mone-

tary rewards in the human striatum. Neuron 58, 284–294.

Keysers, C., and Gazzola, V. (2007). Integrating simulation and theory of mind:

from self to social cognition. Trends Cogn. Sci. (Regul. Ed.) 11, 194–196.

Kriegeskorte, N., Simmons, W.K., Bellgowan, P.S., and Baker, C.I. (2009).

Circular analysis in systems neuroscience: the dangers of double dipping.

Nat. Neurosci. 12, 535–540.

Li, J., Delgado, M.R., and Phelps, E.A. (2011). How instructed knowledge

modulates the neural systems of reward learning. Proc. Natl. Acad. Sci. USA

108, 55–60.

Lohrenz, T., McCabe, K., Camerer, C.F., and Montague, P.R. (2007). Neural

signature of fictive learning signals in a sequential investment task. Proc.

Natl. Acad. Sci. USA 104, 9493–9498.

Mackey, S., and Petrides, M. (2010). Quantitative demonstration of compa-

rable architectonic areas within the ventromedial and lateral orbital frontal

cortex in the human and the macaque monkey brains. Eur. J. Neurosci. 32,

1940–1950.

Mitchell, J.P. (2009). Inferences about mental states. Philos. Trans. R. Soc.

Lond. B Biol. Sci. 364, 1309–1316.

Mitchell, J.P., Macrae, C.N., and Banaji, M.R. (2006). Dissociable medial

prefrontal contributions to judgments of similar and dissimilar others. Neuron

50, 655–663.

Mobbs, D., Yu, R., Meyer, M., Passamonti, L., Seymour, B., Calder, A.J.,

Schweizer, S., Frith, C.D., and Dalgleish, T. (2009). A key role for similarity in

vicarious reward. Science 324, 900.

Moll, J., Krueger, F., Zahn, R., Pardini, M., de Oliveira-Souza, R., and Grafman,

J. (2006). Human fronto-mesolimbic networks guide decisions about chari-

table donation. Proc. Natl. Acad. Sci. USA 103, 15623–15628.

Montague, P.R., King-Casas, B., and Cohen, J.D. (2006). Imaging valuation

models in human choice. Annu. Rev. Neurosci. 29, 417–448.

O’Doherty, J.P., Hampton, A., and Kim, H. (2007). Model-based fMRI and its

application to reward learning and decision making. Ann. N Y Acad. Sci.

1104, 35–53.

Rangel, A., Camerer, C., and Montague, P.R. (2008). A framework for studying

the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9,

545–556.

Rilling, J., Gutman, D., Zeh, T., Pagnoni, G., Berns, G., and Kilts, C. (2002). A

neural basis for social cooperation. Neuron 35, 395–405.

Rizzolatti, G., and Sinigaglia, C. (2010). The functional role of the parieto-frontal

mirror circuit: interpretations and misinterpretations. Nat. Rev. Neurosci. 11,

264–274.

Rushworth, M.F. (2008). Intention, choice, and the medial frontal cortex. Ann.

N Y Acad. Sci. 1124, 181–207.

Rushworth, M.F., Noonan, M.P., Boorman, E.D., Walton, M.E., and Behrens,

T.E. (2011). Frontal cortex and reward-guided learning and decision-making.

Neuron 70, 1054–1069.

Sanfey, A.G. (2007). Social decision-making: insights from game theory and

neuroscience. Science 318, 598–602.

Saxe, R. (2005). Against simulation: the argument from error. Trends Cogn.

Sci. (Regul. Ed.) 9, 174–179.

Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of

prediction and reward. Science 275, 1593–1599.

Singer, T., and Lamm, C. (2009). The social neuroscience of empathy. Ann. N Y

Acad. Sci. 1156, 81–96.

Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R.J., and Frith, C.D.

(2004). Empathy for pain involves the affective but not sensory components of

pain. Science 303, 1157–1162.

Sutton, R.S., and Barto, A.G. (1998). Reinforcement Learning: An Introduction

(Cambridge, MA: The MIT Press).

Yoshida, W., Seymour, B., Friston, K.J., and Dolan, R.J. (2010). Neural

mechanisms of belief inference during cooperative games. J. Neurosci. 30,

10744–10751.

Yoshida, K., Saito, N., Iriki, A., and Isoda, M. (2011). Representation of others’

action by neurons in monkey medial frontal cortex. Curr. Biol. 21, 249–253.

Neuron

Simulation Learning of Others’ Decisions

Neuron 74, 1125–1137, June 21, 2012 ª2012 Elsevier Inc. 1137


	Learning to Simulate Others' Decisions
	Introduction
	Results
	Behavior in Simulating the Other's Value-Based Decisions and Making One's Own Decisions
	Fitting Reinforcement Learning Models for Simulating the Other's Decision-Making Process to Behavior during the Other Task
	Neural Signals Reflecting the Simulated-Other's Reward and Action Prediction Errors
	Shared Representations of Value-Based Decision Making for the Self and Simulated-Other

	Discussion
	Shared Representation between Self and Simulated-Other
	Refinement of Simulation Learning: Action-Prediction Error

	Experimental Procedures
	Subjects
	Experimental Tasks
	Behavioral Analysis and Computational Models Fitted to Behavior
	fMRI Acquisition and Analysis

	Supplemental Information
	Acknowledgments
	References


