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Channel-encoding models offer the ability to bridge different scales of neuronal measurement by interpreting population responses,
typically measured with BOLD imaging in humans, as linear sums of groups of neurons (channels) tuned for visual stimulus properties.
Inverting these models to form predicted channel responses from population measurements in humans seemingly offers the potential to
infer neuronal tuning properties. Here, we test the ability to make inferences about neural tuning width from inverted encoding models.
We examined contrast invariance of orientation selectivity in human V1 (both sexes) and found that inverting the encoding model
resulted in channel response functions that became broader with lower contrast, thus apparently violating contrast invariance. Simula-
tions showed that this broadening could be explained by contrast-invariant single-unit tuning with the measured decrease in response
amplitude at lower contrast. The decrease in response lowers the signal-to-noise ratio of population responses that results in poorer
population representation of orientation. Simulations further showed that increasing signal to noise makes channel response functions
less sensitive to underlying neural tuning width, and in the limit of zero noise will reconstruct the channel function assumed by the model
regardless of the bandwidth of single units. We conclude that our data are consistent with contrast-invariant orientation tuning in human
V1. More generally, our results demonstrate that population selectivity measures obtained by encoding models can deviate substantially
from the behavior of single units because they conflate neural tuning width and noise and are therefore better used to estimate the
uncertainty of decoded stimulus properties.
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Introduction
Bridging knowledge derived from measurements at different spa-
tial and temporal scales is a significant challenge for understand-

ing the link between neural activity and behavior. Although much
work has focused on linking single-unit measurements to behavior,
there is increasing recognition of the importance of population-scale
representations (Benucci et al., 2009; Graf et al., 2011; Church-
land et al., 2012; Mante et al., 2013; Fusi et al., 2016). In human
neuroscience, these bridging challenges are even more severe as
many of the core building blocks of knowledge learned from
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Significance Statement

It is widely recognized that perceptual experience arises from large populations of neurons, rather than a few single units. Yet,
much theory and experiment have examined links between single units and perception. Encoding models offer a way to bridge this
gap by explicitly interpreting population activity as the aggregate response of many single neurons with known tuning properties.
Here we use this approach to examine contrast-invariant orientation tuning of human V1. We show with experiment and modeling
that due to lower signal to noise, contrast-invariant orientation tuning of single units manifests in population response functions
that broaden at lower contrast, rather than remain contrast-invariant. These results highlight the need for explicit quantitative
modeling when making a reverse inference from population response profiles to single-unit responses.
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invasive animal experiments are difficult to verify and replicate in
humans. It is therefore often unknown whether basic phenomena
from the single-unit literature are applicable to humans, let alone
how these phenomena will manifest at the larger scale of popula-
tion activity that is typically interrogated by noninvasive mea-
surement of the human brain.

Recently, an encoding model approach has proven useful in
the analysis of large-scale population activity measured by func-
tional imaging (Naselaris et al., 2011; Serences and Saproo, 2012)
and offers the promise of bridging knowledge from different spe-
cies and scales of measurements. Encoding models are built on
fundamental results in visual physiology, by encoding complex
stimuli in lower dimensional representations, such as receptive
field or channel models. The assumption is that, if these neural
representations are operative in human cortex, then large-scale
measurements of activity represent the aggregated responses of
these basic neural operations. For example, a channel-encoding
model (Brouwer and Heeger, 2009, 2013) has been used to exam-
ine continuous stimulus dimensions, such as color or orienta-
tion, where it is reasonable to expect that there are large groups of
neurons, or channels with known selectivity, and that voxel re-
sponses can be modeled as linear combinations of such channels.
These channel-encoding models have been used to examine re-
sponses for orientation, color, direction, and speed of motion
and somatosensory response to better understand apparent mo-
tion (Chong et al., 2016), cross-orientation suppression (Brou-
wer and Heeger, 2011), normalization (Brouwer et al., 2015),
speeded decision making (Ho et al., 2012), attention (Scolari et
al., 2012; Garcia et al., 2013; Saproo and Serences, 2014; Ester et
al., 2016), working memory (Ester et al., 2013, 2015), perceptual
learning (Byers and Serences, 2014; Chen et al., 2015), biases in
motion perception (Vintch and Gardner, 2014), and exercise
(Bullock et al., 2017) using both functional imaging and EEG
(Garcia et al., 2013; Bullock et al., 2017) measurements. Inverting
these models to form predictions of channel response from cor-
tical measurements produces tuned response profiles. The inter-
pretations of these tuned response profiles are encouraging for
the effort of bridging across measurements as they have shown
results in concordance with expectations from electrophysiolog-
ical measurement of phenomena, such as decision-making reli-
ance on off-target populations (Purushothaman and Bradley,
2005; Scolari et al., 2012) and feature-similarity gain (Treue and
Maunsell, 1996; Saproo and Serences, 2014) and response gain
(McAdams and Maunsell, 1999; Garcia et al., 2013) modulation
effects of attention.

Here we test the ability of the channel-encoding model ap-
proach to bridge single-unit and population-scale measurement
by asking whether the well-known property of contrast-invariant
orientation tuning is manifest in predicted channel responses
from human primary visual cortex. We reasoned that examining
whether orientation tuning bandwidth of human cortical popu-
lation responses change with contrast would provide a good test
case for the use of encoding models to bridge measurements
because there is a clear prediction of invariance from single-unit
measurements (Sclar and Freeman, 1982). However, contrary to
the electrophysiology literature, we found that an encoding model
produced channel response functions that increased in bandwidth as
contrast was lowered. Computational modeling revealed that these
effects can be explained by the reduced signal-to-noise ratio (SNR)
of cortical responses at lower contrast. These results emphasize
that bridging different levels of measurement through these anal-
yses requires explicit quantitative statements of how properties of
single units are expected to manifest in population activity.

Materials and Methods
Subjects. Six healthy volunteers (ages 33–42, two female) from the RIKEN
Brain Science Institute community participated in the experiment; all
had normal or corrected-to-normal vision and were experienced subjects
in functional imaging experiments. The study protocol was approved by
the RIKEN Functional MRI Safety and Ethics Committee, and all sub-
jects gave written consent to experimental procedures in advance of par-
ticipating in the experiment.

Stimuli. Stimuli were generated using MGL, a set of MATLAB (The
MathWorks) routines for implementing psychophysical experiments
(http://gru.stanford.edu/mgl). Stimuli were back projected onto a screen
using an LCD projector (Silent Vision 6011; Avotec) at a resolution of
800 � 600 and a refresh rate of 60 Hz. Subjects viewed the screen via an
angled mirror attached to the head coil. The projector was gamma cor-
rected to achieve a linear luminance output.

Visual stimuli were sinusoidal gratings (spatial frequency: 0.7 cpd) in a
circular aperture (10°), located to the left or the right of a central fixation
cross (1°) at an eccentricity of 8°. The gratings were either low (20%) or
high (80%) contrast, and could be in 1 of 8 evenly spaced orientations
from 0° to 180° (see Fig. 1).

Task and procedures. On each trial, two gratings were presented for
5.12 s, followed by a 3.84 s intertrial interval. During the grating presen-
tation, the phases of both gratings were updated every 0.2 s. The phase of
each grating was randomly chosen from 1 of 16 uniformly distributed
phases from 0 to 2�, and the starting time of the phase update of each
grating was randomly determined such that the phase updates of the two
gratings were asynchronous. The phase updates were implemented to
reduce retinal adaptation and afterimages. The contrast and orientation
of each grating were randomly chosen on each trial such that each com-
bination of contrast (two levels) and orientation (eight levels) was pre-
sented three times in each run (48 trials in total). Although the intertrial
interval was short, which could result in nonlinear summation of responses
from the previous trial (Boynton et al., 1996), the trial randomization
procedure served to minimize previous trial effects as, on average, they
would come from a random trial type. In addition, a fixation period of
5.12 s preceded each run, making each run 435.2 s in the scanner. Sub-
jects completed 9 runs in the scanner (432 trials in total), which yielded
27 trials per orientation/contrast combination.

While the gratings were presented in the periphery, subjects performed a
luminance discrimination task at fixation. On each trial in this task, the
fixation cross dimmed for 0.4 s twice, separated by a 0.8 s interval, and
subjects had to indicate in which interval the cross appeared darker. The
magnitude of dimming was held constant for one interval while the
magnitude of dimming in the other interval was controlled by a one-up
two-down staircase. Subjects pressed one of two keys (1 or 2) to indicate
their response. The fixation task was performed continuously through-
out a run and was asynchronous with the display of the grating stimuli.
This task was used to control subjects’ attention and ensure a steady
behavioral state and eye fixation. The independently randomized con-
trast and orientations of the two gratings on either side also served as an
internal check of the fixation quality, as any systematic bias of eye posi-
tion for one stimulus would not be systematic for the other.

MRI methods. Imaging was performed with a Varian Unity Inova 4T
whole-body MRI system (now Agilent Technologies) located at the RIKEN
Brain Science Institute (Saitama, Japan). A volume RF coil (transmit) and a
four-channel receive array (Nova Medical) were used to acquire both func-
tional and anatomical images.

Each subject first participated in a separate scanning session to obtain
their retinotopic maps (see below for more details), using standard
procedures. During this session, a high-resolution 3D anatomical T1-
weighted volume (MPRAGE; TR, 13 ms; TI, 500 ms; TE, 7 ms; flip angle,
11°; voxel size, 1 � 1 � 1 mm; matrix, 256 � 256 � 180) was obtained,
which served as the reference volume to align all functional images. The
reference volume was segmented to generate cortical surfaces using Free-
surfer (Dale et al., 1999). Subsequently, the anatomy volumes taken at the
beginning of each session were registered to the reference volume so that
the cortical regions in the functional scans were aligned with the retino-
topy. All analyses were performed in the original (nontransformed) co-

2 • J. Neurosci., Month XX, 2017 • 37(XX):XXXX–XXXX Liu et al. • Inverted Encoding Models of Human Population Response



ordinates before being mapped to the cortical surface and specific visual
regions.

During the main experiment, functional images were collected using a
T2*-weighted EPI sequence (TR, 1.28 s; TE, 25 ms; flip angle, 45°; sensi-
tivity encoding with acceleration factor of 2). We collected 29 slices at an
angle approximately perpendicular to the calcarine sulcus, with resolu-
tion of 3 � 3 � 3 mm (FOV, 19.2 � 19.2 cm; matrix size, 64 � 64). The
first four volumes in each run were discarded to allow T1 magnetization
to reach steady state. In addition, a T1-weighted (MPRAGE; TR, 11 ms;
TI, 500 ms; TE, 6 ms; flip angle, 11°; voxel size, 3 � 3 � 3 mm; matrix,
64 � 64 � 64) anatomical image was acquired to be used for coregistra-
tion with the high-resolution reference volume collected in the retino-
topic session.

Various measures were taken to reduce artifacts in functional images.
During scanning, respiration was recorded with a pressure sensor, and
heartbeat was recorded with a pulse oximeter. These signals were used to
attenuate physiological signals in the imaging time series using retrospec-
tive estimation and correction in k space (Hu et al., 1995).

Retinotopic mapping procedure. In this separate scanning session, we
mapped each subject’s occipital visual areas using well-established phase-
encoding methods (Sereno et al., 1995; DeYoe et al., 1996; Engel et al.,
1997), so only a brief description is provided here. We presented rotating
wedges and expanding/contracting rings over multiple runs and aver-
aged runs of the same type. Then a Fourier analysis was applied to the
averaged time course to derive the polar angle map and eccentricity map
from the wedge and ring data, respectively. Borders between visual areas
were defined as phase reversals in the polar angle map of the visual field.
The map was visualized on computationally flattened representations of
the cortical surface generated by FreeSurfer. For each subject, we could
readily define many visual areas, including V1, V2, V3, and hV4. How-
ever, we will mainly focus on V1 in this study.

BOLD data analysis. Data were processed and analyzed using mrTools
(http://gru.stanford.edu/mrTools) and other custom code in MATLAB.
Preprocessing of functional data included head movement correction,
linear detrend, and temporal high-pass filtering at 0.01 Hz. The func-
tional images were then aligned to high-resolution anatomical images for
each participant, using an automated robust image registration algo-
rithm (Nestares and Heeger, 2000). Functional data were converted to
percentage signal change by dividing the time course of each voxel by its
mean signal over a run, and data from the 9 scanning runs were concat-
enated for subsequent analysis.

Voxel selection. We used an event-related (finite impulse response or
deconvolution) analysis to select voxels in V1 that responded to the
stimulus presentation. Each voxel’s time series was fitted with a GLM
with regressors for 16 conditions (2 contrasts � 8 orientations) that
modeled the BOLD response in a 25 s window after trial onset. The design
matrix was pseudo-inversed and multiplied by the time series to obtain
an estimate of the hemodynamic response for each stimulus condition.
Because the stimulus was independently randomized in the left and right
visual field, we fitted two event-related models for each subject: one
based on the stimulus in the left visual field and one based on the stimulus
in the right visual field.

For each voxel, we also computed a goodness-of-fit measure (r 2

value), which is the amount of variance in the BOLD time series ex-
plained by the event-related model (Gardner et al., 2005). In other words,
the r 2 value indicates the degree to which a voxel’s time course is modu-
lated by the task events; hence, we can use it to select voxels in V1 that
were active during the experiment. We selected voxels whose r 2 values
were �0.05, which yielded �100 voxels in each V1 in each hemisphere.
Subsequent analysis focused on imaging data in this subset of V1 voxels.
Our results did not vary substantially with the voxel selection criterion.
For example, when we varied the r 2 cutoff to select a larger number of V1
voxels (�150), the tuning widths of the channel response function were
30.6 and 49.9 degrees for the high- and low-contrast stimulus, respec-
tively. For a smaller number of V1 voxels (�65), the tuning widths values
were 22.7 and 38.7 degrees, respectively.

Channel-encoding model. We used a channel-encoding model (also
referred to as an “encoding model” for brevity below), proposed by
Brouwer and Heeger (2009) to characterize the orientation tuning of V1

voxels. Conceptually, the model assumes each voxel’s response is some
linear combination of a set of channels, each channel having the same
bandwidth, but with a different preferred stimulus value. We refer to the
tuning functions that specify the channels as “model basis functions,”
which together span the range of all stimulus values. The intuition is that
each voxel’s response is due to populations of neurons that are tuned to
different stimulus values and the analysis proceeds by trying to determine
which combination of these neural populations (channels) are most re-
sponsible for a voxel’s response. For every stimulus presentation, the
ideal response of each channel is calculated based on the stimulus value
and model basis functions. The weights of each channel that best fit each
voxel’s response in the least-squares sense are determined using linear
regression from a training dataset. Once these weights are fit, the model
can be inverted on a left-out test dataset to reconstruct channel responses
from observed voxel responses. The average channel responses relative to
the actual presented stimulus is called a channel response function.

To use as training and test data for the channel-encoding model, we
obtained single-trial BOLD responses for each V1 voxel with the following
procedure. For each V1 hemisphere, we first averaged the event-related
BOLD response (see Voxel selection) across all voxels and conditions, which
served as an estimate of the hemodynamic impulse response function in
each V1 hemisphere. We then constructed a delta function for each in-
dividual trial (with the delta corresponding to the time at which the trial
began), and convolved it with the estimated hemodynamic impulse re-
sponse function, to produce a design matrix coding for each individual
trial in each condition. The design matrix was then pseudo-inversed and
multiplied by the time series to obtain an estimate of the response am-
plitude for each individual trial in each voxel. We call the set of response
amplitudes across all voxels in a V1 hemisphere a response “instance.”

We fit the encoding model to the instances with a fivefold cross-
validation scheme, in which four-fifths of the trials were randomly
selected to be the training data and the remaining one-fifth of trials
constituted the test data. This analysis was performed on instances for the
high-contrast and low-contrast trials separately (216 trials per contrast).
Our encoding model consisted of 8 evenly spaced channels (i.e., model
basis functions) from 0° to 180°, with each channel a half-wave rectified
sinusoid raised to the power of 7. These basis functions were chosen to
approximate single-neuron’s orientation tuning function in V1. In the
following exposition, we adopted the notation from Brouwer and Heeger
(2009). The training instances can be expressed as a m � n matrix B1,
where m is the number of voxels and n is number of trials in the training
data. We then constructed hypothetical channel outputs given the stim-
ulus orientation on each trial of the training dataset, which yielded a k �
n matrix C1, where k is the number of channels (i.e., k � 8). Each column
in the C1 matrix represented a set of ideal response to the stimulus ori-
entation on that trial from the eight channels. A weight matrix W (m � k)
relates the observed data B and the hypothetical responses as follows:

B1 � W C1 (1)

Each row of W represents the relative contribution of the eight channels
to that voxel’s response. The least-square estimate of W was obtained
with the following equation (T indicates the transpose of the matrix):

Ŵ � B1 C1
T (C1C1

T)�1 (2)

The test instances can be expressed as a m � p matrix B2, where p is the
number of trials in the test data. The estimated channel response to each
test stimulus (Ĉ2) can then be estimated using the weights W as follows:

Ĉ2 � (ŴT Ŵ)�1 ŴT B2 (3)

Ĉ2 is a k � p matrix, with each column representing each channel’s
response to the stimulus on that test trial. The columns of Ĉ2 were circu-
larly shifted such that the channel aligned to the test stimulus on that trial
was centered in the orientation space. The shifted columns were then
averaged to obtain a mean channel response. This procedure was
repeated in each fold of the cross-validation, and the mean channel re-
sponses from each fold were further averaged to obtain what we will refer
to as a “channel response function.” For each V1 hemisphere in each
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participant, we obtained channel response functions for both the con-
tralateral and ipsilateral stimulus, separately for the high-contrast and
low-contrast conditions.

In addition to the channel response function, we also calculated a
goodness-of-fit measure of the encoding model. In each cross-validation
fold, after we obtained estimates of the channel weights Ŵ, we also con-
structed another set of hypothetical channel outputs given the actual
stimulus orientation in the test data, C2 (this is a matrix similar to C1 but
for the test trials, and differs from Ĉ2, which is the estimated channel
responses based on the voxel responses). The predicted voxel response
can be obtained via the following:

B2pred � Ŵ C2 (4)

To the extent that the encoding model provides a good fit to the data, the
predicted response B2pred (m � p) should be similar to the observed
response, B2. We can thus calculate the amount of variance explained by
the model as follows:

r2 � 1 �
��B2pred � B2�

2

��B2 � B� 2�
2

(5)

B2 is the mean voxel responses across voxels and trials, and the summa-
tion was performed across voxels and trials (i.e., all values in the m � p
matrix). We calculated r 2 from each fold of the cross validation and
averaged them across the folds to obtain a single measure of the goodness
of fit, for each contrast. This r 2 is different from the r 2 that represents
the goodness of fit of the event-related model (see Voxel selection). In the
remainder of this report, we will focus on this r 2 value that indexes the
goodness of fit of the channel-encoding model.

Quantifying the channel response function. We fitted a circular bell-
shaped function (von Mises) to the channel response function as follows:

y � y0 � Ae� cos� x��� (6)

Where � is the concentration parameter that controls the width of the
function, � is the mean, x is the orientation, A is the amplitude parame-
ter, and y0 is the baseline. Thus, there were four free parameters of the fit:
baseline (y0), amplitude ( A), mean (�), and concentration (�). Because
orientation is on [0, �], whereas the von Mises function spans the inter-
val [0, 2�], orientation values were multiplied by 2 during the fit, after
which the fitting results were scaled back to [0, �]. Fitting was performed
using a nonlinear least square method, as implemented in MATLAB. To
ease the interpretation of the results, we report the half-width at half-
maximum instead of the concentration parameter � because the latter is
inversely related to the variance.

Linking neuronal tuning to channel response: a computational model.
We implemented a computational model that links neuronal tuning to
channel response functions, using the assumptions underlying the
channel-encoding model. Given that the channel response function is a
highly derived statistic, this modeling effort was used to clarify how var-
ious assumptions of neural tuning and signal to noise would manifest
in channel response functions. Specifically, we used this model to fit our
observed data and simulate other scenarios to test the validity of the
encoding model. The schematic of the model is outlined in Figure 3. The
model contains 100 V1 voxels, comparable with the actual number of
voxels used in our data analysis (see above). Each voxel is assumed to
contain neurons tuned to all orientations, whose tuning functions are
described by von Mises functions (see above). The preferred orientations
(�) are evenly distributed across all possible orientations in 1° incre-
ments (left column, “Neural tuning functions”), forming 180 classes of
neurons. The width of the neural tuning function is specified by the
concentration parameter, �, which is the same for all neurons but can be
manipulated across different simulations. The area under the orientation
tuning function for neurons was normalized to 1 so that the average
firing rate for each neuron would not vary with tuning width. For each
voxel, a weight vector, w, was generated by randomly sampling 180 num-
bers from [0, 1]. This weight vector specifies how much each class of
neurons contributes to the voxel’s response. For an input stimulus with
an orientation, �, the response of each neuron is calculated according to

its tuning function (see Eq. 6). For each voxel, the responses of individual
neurons are multiplied by the weight vector, w, and then summed to
arrive at a predicted response (middle column, “Random weights”). To
calculate the final voxel response, Gaussian noise, N(0, 	), is then added
to this response to simulate physiological and thermal noise in BOLD
measurements. Thus, each voxel’s response is determined by neuronal
tuning width (�), weight vector (w), and noise (	). w is randomly gen-
erated for each voxel in each simulation, whereas � and 	 are parameters
that we examined systematically in several simulations (see Results).

We simulated experiments with the same basic setup as our empirical
study: 8 possible orientations, with each orientation shown 27 times
(trials). For each trial, we obtained a vector of voxel responses (in-
stances), calculated as above. Then all the trial instances were subjected to
the same analysis as the real data described above (i.e., cross-validation in
which four-fifths of data were used to obtain the channel weights and
one-fifth of the data was used to obtain channel response functions). We
used the same exact code to analyze the synthetic and real data.

Computation of the posterior distributions. We computed the proba-
bility of different stimulus values given the test data (i.e., the posterior
distribution) using a technique from van Bergen et al. (2015). The
method begins with finding the weights of the channel-encoding model
as above. After removing the signal due to the encoding model, a noise
model is fit to the residual response. The noise model assumes that each
individual voxel’s variability is Gaussian with one component that is
independent among voxels and another that is shared across all voxels.
Each of the channels is modeled to have independent, identically distrib-
uted Gaussian noise. This leads to a covariance matrix for the noise as
follows:

� � 
��T � �1 � 
� I���T � 	 2Ŵ ŴT (7)

Where 	 is the noise model’s covariance matrix, I is the identity
matrix, � denotes element-wise multiplication, � is a vector containing
each voxel’s independent standard deviation, 
 is a scalar between 0 and
1, which controls the amount of shared variability among voxels, 	 is the
SD of each channel, and Ŵ is the estimated weight matrix from Equation
2. This noise model with parameters, �, 
, and 	 is fit via maximum
likelihood estimation to the residual and can be used to compute the
probability of generating any particular response given a stimulus value.
Inversion of this equation using Bayes’ rule and a flat prior allows one to
compute the probability of any stimulus value given a response, the
posterior distribution (for a derivation and detailed explanation, see
van Bergen et al., 2015). All analysis followed the same fivefold cross-
validation scheme used for the encoding model by which four-fifths of
the data were used to fit the model weights and noise model parameters
and the one-fifth left-out data were used to compute the posterior distri-
bution using Bayes’ rule. Results are shown averaged across all five left-
out folds.

Results
We measured BOLD responses from retinotopically defined V1
to oriented sinusoidal gratings (Fig. 1) and used the resulting data
to train and test a channel-encoding model. We first report aver-
age (univariate) activity across voxels. Although responses aver-
aged across subjects and voxels in V1 did not show any apparent
selectivity for orientation (Fig. 2A), they were, as expected (Boy-
nton et al., 2012), greater for higher-contrast compared with low-
contrast contralateral stimuli (compare red vs yellow). Consistent
with the laterality of V1, responses did not vary with contrast of
the ipsilateral stimulus (black). The presence of a strong contrast
response for the contralateral stimuli, but a complete absence of
such a response for ipsilateral stimuli, also suggests that subjects
maintained stable central fixation.

Despite this lack of orientation selectivity, channel response
functions obtained from the encoding model and averaged across
subjects displayed peaked responses at the true orientation of the
contralateral stimulus for both high-contrast (Fig. 2B, red) and
low-contrast (Fig. 2C, yellow) stimuli. We computed r 2, a mea-
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sure of goodness of fit, which showed that the channel-encoding
model accounted for 31% and 13% (high- and low-contrast con-
tralateral stimuli, respectively) amount of the variability of the data.
The ability to recover these peaked functions of orientation is con-
sistent with previous studies using classification approaches (Kami-
tani and Tong, 2005) and is presumably due to biases in response to
orientation, which differ for individual voxels but are eliminated
when responses are averaged across voxels. As expected from the
lateralization of V1, these channel response functions are flat when
constructed for the ipsilateral stimulus (black), thus serving as an
internal control on the validity of the encoding model approach.

However, contrary to the expectations of contrast invariance,
channel response functions were broader for low-contrast com-
pared with high-contrast contralateral stimuli (Fig. 2D, compare
yellow with red). Fitting a bell-shaped function (von Mises) to the
subject-averaged channel response functions revealed that the
tuning width went from 25.6 to 42.0 degrees (half-width at half-
height) as contrast was lowered. Amplitude was also decreased
for the low-contrast stimuli from 0.27 to 0.23, where 1 would be
the ideal height of the channel response function if voxel responses
contained noise-free information about stimulus orientation. This
pattern of results was also evident in individual subject’s channel
response functions. Nine of 12 hemispheres showed a decrease in
tuning width as contrast was decreased (p � 0.013, t(11) � �2.60,
one-tailed paired t test). Ten of 12 hemispheres had lower ampli-
tude for the low-contrast condition (p � 0.042, t(11) � 1.90,
one-tailed paired t test). We also examined extrastriate areas V2,
V3, and hV4 and found similar results. In V2, tuning width went
from 21.3 to 75.5 degrees and amplitude went from 0.25 to 0.19 as
contrast was lowered. In V3, tuning width went from 17.8 to 88.6
degrees and amplitude went from 0.23 to 0.18 as contrast was
lowered. Finally, in hV4, tuning width for high-contrast stimuli
was 14.2 degrees and channel response function was essentially
flat for low-contrast stimuli. Below, we focus on results from V1,
which is best informed by neurophysiological results (Sclar and
Freeman, 1982; Skottun et al., 1987; Carandini et al., 1997).

Although the lack of contrast-invariant channel response
functions might imply broader neuronal tuning at low contrast in
human visual cortex, we instead considered whether it might be

due to the weaker stimulus-driven signal at lower contrast. As
noted above, BOLD responses had lower amplitude with lower
contrast (Fig. 2A). Given that many sources of noise in BOLD are
non-neural (e.g., hemodynamic variability and head motion)
and thus not expected to vary with signal strength, these lower-
amplitude responses result in lower SNR of the measurements
made with lower contrast. Indeed, the amount of variance ac-
counted for by the encoding model, r 2, was significantly lower for
low-contrast compared with high-contrast stimuli for 12 of 12
hemispheres (p 
 0.001, t(11) � 5.58, one-tailed paired t test). In
the extreme case, channel response functions built on responses
without any signal, as for the ipsilateral stimulus, are flat. Thus, we
reasoned that the lower SNR measurements at low contrast could
also result in flatter (i.e., broader) channel response functions.

To test whether reduced SNR at low contrast, rather than
changes in neural tuning, could account for the increased channel
response bandwidth at low contrast, we built simulations (Fig. 3;
see Materials and Methods). Briefly, each simulated voxel received
randomly weighted responses from simulated orientation-tuned
neurons. Different voxels had different weightings of the neuronal
responses, thus resulting in weak, but different, orientation selec-
tivity across voxels. We added random Gaussian noise to these
voxel responses and trained and tested the encoding model using
the same procedures as we did for the actual BOLD data. We
varied the SD of the added noise (	) to produce channel response
functions that best fit the empirical data (in the least-squares
sense) from the high-contrast trials (Fig. 4A). We then noted that,
in the empirical data, there was a 42.2% decrease in neural re-
sponse from high to low contrast across voxels (Fig. 2A). We
therefore decreased neural response by this amount for all the
simulated neurons and found that the resulting channel response
function to be a reasonable fit for the low-contrast data (Fig. 4B).
Importantly, this good correspondence between model predic-
tions and data was achieved without fitting any parameter be-
cause the only thing we changed in the simulation was to decrease
the magnitude of response across all neurons according to the
value found from the empirical data. This suggests that reduc-
tions in response magnitude, and therefore SNR, are sufficient to
produce changes in channel response width commensurate with
what we observed.

Although tuning width is not expected to change with contrast,
what if we had tested a property for which we expect a neural tuning
width change? Do channel response functions track changes in neu-
ral tuning width? We simulated neural tuning functions from 5 to
40 degrees half-width at half-height as well as a “stick function,”
which responds only to a single orientation maximally and does
not respond to any other orientation and computed channel re-
sponse functions under different amounts of noise (Fig. 5A, cyan
to magenta curves represent different neural tuning widths). We
found that the resulting channel response functions did indeed
track the neural tuning widths, but as the goodness-of-fit r 2 in-
creased (achieved by varying the SD of the added noise; Fig. 5B,
abscissa), the difference in channel response widths was dimin-
ished (Fig. 5B, larger splay of curves on the left vs right side).
Thus, channel response functions can reflect underlying neural
tuning widths; but perhaps counterintuitively, the better the good-
ness of fit of the encoding model, the less difference the neural tuning
width makes.

To understand why better goodness of fit implies worse model
discriminability of underlying neural tuning functions, it is im-
portant to note that the absolute width of channel response func-
tions is, in the limit of no noise, determined by the basis functions
used in the encoding model and not by the neural tuning widths

Figure 1. Schematics of the experiment. Low- and high-contrast gratings of eight possible
orientations were presented, with contrast and orientation independently randomized for each
visual field. A luminance change-detection task was performed at the fixation to control sub-
jects’ fixation and state of attention.
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themselves. We simulated two variations of the encoding model
in which we varied the model basis function widths. We increased
the basis function width by decreasing the exponent on the sinu-
soidal basis to 3 (Fig. 5A) and decreased the basis function width
by using stick filters (Fig. 5C). For all the simulations, as the
goodness of fit increases, the recovered channel response func-
tions approach the width of the model basis function (dashed
line) rather than the neuronal response width (for both the chan-
nel response functions and the model basis functions, we use the
fitted half-width at half-height as our measure of tuning width;
therefore, the stick functions do not have infinitely narrow tun-
ing). Given that the encoding model is essentially a linear regres-
sion model, this is not an unexpected outcome. Linear weights
are being determined to best map the voxel responses unto ideal
channel responses. As long as the voxel responses are determined
by stimulus orientation, then the regression model will be able to
recreate exactly any model basis functions that can be formed as
linear combinations of the represented orientations.

The above analysis suggests that, although absolute neural tuning
width may not be readily determined from the channel response
function width, changes in tuning width might be meaningful if

SNR does not change between conditions. That is, reading verti-
cally for one level of goodness of fit in Figure 5A–C, the channel
response function width changes systematically as a function of
neural tuning width. Might we be able to determine that neural
tuning width has changed if we observe data in which we have
matched goodness of fit of the encoding model? Although this
does not occur for changes in contrast, this could be the case for
potential modulation of tuning width by cognitive factors, such
as attention and learning.

However, changes in neural tuning width also result in changes in
the model’s goodness of fit, thus complicating the possibility of
interpreting changes in channel response width. We simulated dif-
ferent neural tuning widths from 5 to 45 degrees half-width at
half-height (Fig. 6, abscissa) for different amounts of additive
noise (SD ranging on a logarithmic scale from 0.001 to 1, blue to
yellow curves). As can be appreciated by the downward slopes of
the curves in Figure 6, as the neural tuning widths get larger, the
fit of the encoding model gets worse (lower r 2, ordinate). The
reason for this worsened fit is because as neural tuning width gets
wider, there is less information about orientation available to fit
the model. In the extreme, a flat neural tuning function would
result in no orientation-specific response and the encoding
model would fail to fit the data completely. Each curve in the
simulation is what one might expect to measure if neural tuning
width is the only variable that changes in the experiment and
noise is due mostly to external factors that do not change with
conditions. That is, if one expects only an increase in neural tun-
ing width, the resulting channel response functions would be
expected to have both wider tuning and lower r 2. This pattern of
results would make it difficult, if not impossible, to determine
whether the changes in tuning were due to decreased SNR, de-
creased neural tuning width, or some combination of both.

These empirical and simulation results suggest caution in in-
terpreting changes in channel response functions because they
could be due to either or both changes in neural tuning width and
changes in signal strength. What better ways are there for inter-
preting these functions? A recent report (van Bergen et al., 2015)
proposes to transform these channel response functions into pos-
terior distributions that show the probability of different stimu-
lus values given the measured response. We applied the same
analysis to our channel response functions, by estimating the

A B C D

Figure 2. A, Group-averaged mean BOLD response across V1 for each orientation, separately for the contralateral and ipsilateral high- and low-contrast stimuli. B, Group-averaged channel
response functions from V1 to a high-contrast grating. Contra, Response calculated for the contralateral stimulus; Ipsi, response calculated for the ipsilateral stimulus. C, Same as B, except for
low-contrast grating. D, Group-averaged channel response functions to the low- and high-contrast grating in the contralateral visual field (symbols, same as the contralateral response in B, C). Solid
lines indicate best-fitting von Mises functions to each contrast level. Error bars indicate SEM across participants.

Figure 3. Schematic of the model linking neuronal response to channel response. Each voxel
(right column) received randomly weighted responses from orientation-tuned neurons (left
column). After weighting and summing, random Gaussian noise was added to obtain simulated
voxel responses.
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distribution of noise in the voxels and channels to determine the
probability of measuring responses given any oriented stimulus
and then applying Bayes’ rule with a flat prior to obtain the prob-
ability of various stimuli given the responses we measured in a
left-out validation dataset (see Materials and Methods; Fig. 7).
This resulted in posterior distributions that were peaked around
the actual orientation for the contralateral stimulus (red and yel-
low curves) but flat for the ipsilateral stimulus (black curves),
thus replicating the results on channel responses. This trans-
formation of the results into posterior distributions allows for
a more straightforward interpretation of the encoding model
approach, encouraging interpretation in terms of the certainty
by which a given neural response tells us what the stimulus
was, rather than what it implies about underlying neural tun-
ing functions.

Discussion
Using an encoding model approach, we built channel response
functions for orientation and found that, unlike contrast-
invariant single units, they were broader at lower contrast.
Simulations showed that this effect could be fully explained by
the measured decrease in overall neural response between high
and low contrast, which results in lower SNR. As signal to
noise is increased, channel response functions become nar-
rower, until, in the limit of no noise, they approximate the
shape of the model basis function (and not the underlying
neural tuning function). While changes in underlying neural
selectivity in our model could be reflected in channel response
functions, our results demonstrate that changes in channel
response functions do not necessarily reflect changes in un-
derlying neural selectivity.

A B

Figure 4. Model predictions of empirical channel response functions. A, Empirical channel response function for contralateral high-contrast stimuli (red symbols, same data as in Fig. 2B) were fit
by the computational model, with the best-fitting channel response shown in black symbols and lines. B, Empirical channel response function for contralateral low-contrast stimuli (red symbols,
same data as in Fig. 2C) and the channel response from the same model used in A (black symbols and lines), except that the neuronal response amplitude was reduced. Error bars indicate SE across
subjects and hemispheres.

A B C

Figure 5. Model simulations of how channel response function varies with neural tuning, SNR, and model basis function. Each panel uses a different model basis function (shown in the top graph)
to derive channel responses from synthetic data generated with different combinations of signal to noise (r 2, x-axis) and neural tuning width (colored lines). The width of the channel response
function is plotted on the y-axis. Horizontal dashed lines indicate the width of the model basis function. A has a half-wave rectified sinusoid with exponent of 3, B has a half-wave rectified sinusoid
with exponent of 7 and C has a stick function; shown in the top graph.
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Orientation selectivity of single-unit responses has been shown to
be invariant to image contrast (Sclar and Freeman, 1982; Skottun et
al., 1987; Carandini et al., 1997), suggestive of a general neural
computational mechanism (Carandini and Heeger, 2011) by
which visual perception can remain relatively unaffected by dif-
ferences in visibility of stimuli. Despite this central theoretic
importance, obtaining noninvasive measurement of selectivity
bandwidth from human cortex has been technically difficult be-
cause orientation selectivity is organized into cortical columns
(Hubel and Wiesel, 1962, 1968; Blasdel and Salama, 1986; Bon-
hoeffer and Grinvald, 1991), much smaller than the typical
spatial resolution of BOLD (Ogawa et al., 1990, 1992) measure-
ments. While direct measurements of such columnar structures
in humans have been achieved (Cheng et al., 2001; Sun et al.,
2007; Yacoub et al., 2007, 2008), multivariate analysis using pat-
tern classification approach to decode orientation and motion
direction (Haynes and Rees, 2005; Kamitani and Tong, 2005,
2006) from distributed activity patterns has become a more com-
mon approach (Norman et al., 2006). However, this classification
approach generally produces a categorical outcome, for example,
which of two orientations was more likely to have resulted in the

measured response pattern and thus is not typically used for
probing selectivity bandwidth of neural representations. The en-
coding model approach allows one to reconstruct a response pro-
file for a stimulus that has a tuning bandwidth that can be
inspected across different contrasts.

Although we found an increase in the bandwidth of channel
response functions for lower-contrast stimuli from human V1,
this increase could be fully accounted for by the measured reduc-
tion of response amplitude due to contrast, thus reconciling our
data with contrast-invariant orientation tuning. We recognize
that contrast invariance at the population level as measured with
BOLD is not guaranteed, even if single-unit spiking responses
display contrast invariance. Systematic relationships between
contrast sensitivity and selectivity for orientation could result in
population responses changing selectivity with contrast. For ex-
ample, if the least orientation-selective neurons saturate their
responses at lower contrast than the most selective neurons, then
population response would become more selective as contrast
increases because population response would be dominated by
the most selective neurons. However, no such systematic rela-
tionship has been observed and population spiking responses
appear contrast-invariant in cats (Busse et al., 2009), consistent
with our results. Furthermore, BOLD measurements may be bet-
ter correlated with local field potentials than spiking activity
(Logothetis et al., 2001), which could also result in deviations of
BOLD population measures of contrast invariance and spiking
activity of neurons. If BOLD measures are sensitive to subthresh-
old, synaptic activity that can contribute to local field potentials,
broadening of channel response functions that we observed
could be reflective of subthreshold activity, if such activity is not
contrast-invariant. However, intracellular measurements of mem-
brane potentials show that selectivity does not broaden at lower
contrast. Indeed, selectivity is slightly increased at low contrast
(Finn et al., 2007), consistent with our interpretation that chan-
nel response function broadening at low contrast is due to reduc-
tion in signal to noise.

Given our results, bridging effects of attention on single units
with effects uncovered using encoding models of functional
imaging measurements (Sprague et al., 2015) may be similarly
complicated as bridging contrast invariance effects. Single-unit
studies have suggested that neurons change gain, not selectivity
bandwidth (McAdams and Maunsell, 1999; David et al., 2008)
with spatial attention, a key finding that has shaped our under-
standing of neural mechanisms of attention (Carrasco, 2011; Ling et
al., 2015). In human population measurements, improved ori-
entation encoding has been found when orientation (but not
contrast) is task relevant (Jehee et al., 2011; Ling et al., 2015).
Although it would be of interest to know whether these popula-
tion effects of attention reflect differences in neural tuning
bandwidth, selective attention, similar to image contrast, also
modulates response amplitudes (Brefczynski and DeYoe, 1999;
Gandhi et al., 1999; Kastner et al., 1999; Kastner and Ungerleider,
2000; Reynolds and Chelazzi, 2004) and thus is expected to im-
prove SNR for population measures. Similarly to contrast effects,
attention should be expected to bias channel response functions
toward a narrower tuning, even if neural tuning bandwidth does
not change.

A similar disconnect between single-unit and population mea-
sures impacts even simpler measures of cortical response that do
not require multivariate approaches. Contrast sensitivity can be
directly imaged because single units monotonically increase re-
sponse with contrast (Albrecht and Hamilton, 1982; Sclar et al.,
1990; Busse et al., 2009), resulting in a population response that

Figure 6. Model simulations of how goodness of fit of the encoding model (r 2) varies with
neural tuning width and noise level in the synthetic data. Different colors represent different
amounts of Gaussian noise added to the simulated neural response.

Figure 7. Posterior distributions from the Bayesian analysis. These functions represent the
probability that a given stimulus (measured by the offset from the true orientation, x-axis)
caused the observed BOLD response. Red represents posterior distributions for high-contrast
contralateral stimuli. Yellow represents posterior distributions for low-contrast contralateral
stimuli. Black represents posterior distributions for ipsilateral stimuli. Shaded region represents
the SE over subjects and hemispheres.
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also monotonically increases (Tootell et al., 1998; Boynton et al.,
1999; Logothetis et al., 2001; Avidan and Behrmann, 2002; Ol-
man et al., 2004; Gardner et al., 2005). Spatial attention has gen-
erally been shown to shift contrast response vertically upward
when measured with functional imaging (Buracas and Boynton,
2007; Li et al., 2008; Murray, 2008; Pestilli et al., 2011; Hara and
Gardner, 2014), which appears to be different from the variety of
effects from contrast-gain to response-gain reported for single
units (Reynolds et al., 2000; Martínez-Trujillo and Treue, 2002;
Williford and Maunsell, 2006; Lee and Maunsell, 2010; Poores-
maeili et al., 2010; Sani et al., 2017). Consideration of normaliza-
tion and the size of the attention field relative to stimulus-driven
responses can give rise to effects that can account for single-unit
responses and EEG measures (Reynolds and Heeger, 2009; It-
thipuripat et al., 2014). But predictions of this normalization
model of attention may differ for single units and population
measures as different neurons in a population can be exposed to
different balance of attention field and stimulus drive, giving rise
to additive shifts when considered as a population (Hara et al.,
2014). Relatedly, response gain changes may also manifest as ad-
ditive shifts when directly examining voxel feature selectivity
(Saproo and Serences, 2010).

While neural tuning width can be reflected in channel response
functions, neural tuning width and signal-to-noise changes are in-
tertwined, making it hard to disentangle their effects. For exam-
ple, one might examine conditions in which signal to noise is
matched and then hope to attribute changes in channel response
function bandwidth solely to changes in neural tuning band-
width. However, our simulations show signal-to-noise measures,
such as the variance accounted for by the encoding model (r 2),
covary with neural tuning width. As neural tuning width broad-
ens, there is less modulation of voxel response with orientation;
thus, the encoding model shows a decrease in r 2. Therefore, even
pure changes in neural tuning width would result in conditions
with lower r 2, making it hard to attribute changes in channel
response functions solely to changes in neural tuning width.

The results of our simulation are agnostic to the source of
selectivity for orientation in voxels. One possible source of orien-
tation information are the irregularities of columnar organiza-
tion, which could give rise to small, idiosyncratic biases in voxels
(Boynton, 2005; Swisher et al., 2010). However, large-scale biases
for cardinal (Furmanski and Engel, 2000; Sun et al., 2013) and
radial (Sasaki et al., 2006) orientations have been reported, and
these biases have been shown to be an important source of infor-
mation to drive classification (Freeman et al., 2011, 2013; Beckett
et al., 2012; Wang et al., 2014; Larsson et al., 2017; but see Alink et
al., 2013; Pratte et al., 2016). Large-scale biases may result from
vascular (Gardner, 2010; Kriegeskorte et al., 2010; Shmuel et al.,
2010) or stimulus aperture (Carlson, 2014) related effects. Our
simulations do not require, or exclude, any topographic arrange-
ment of biases. Regardless of the source of orientation bias, chan-
nel response function widths would be expected to broaden as
signal to noise decreases.

More generally, our results suggest a “reverse-inference” prob-
lem (Aguirre, 2003; Poldrack, 2006) when interpreting outputs
from inverted encoding models. Forward encoding from hypo-
thetical neural responses to population activity is a powerful tool,
but reversing this process to infer about neural responses is
problematic when there is not a one-to-one mapping between
single-unit and population measures. Consequently, this reverse-
inference problem is not restricted to channel-encoding models
but will occur for other encoding model approaches, such as
population receptive fields (Dumoulin and Wandell, 2008) or

Gabor wavelet pyramids (Kay et al., 2008), if one were to invert
these models to infer properties of the underlying neural re-
sponses. For contrast and orientation, both increases in response
amplitude and neural selectivity can result in narrower band-
width of the channel response functions, so reverse inference
requires taking both into account. Regardless of which neural
change has occurred, read-out of these responses, be they in the
brain or from external measurement, will have less certainty
about what stimulus has caused those responses. Techniques that
represent the output of encoding models as posterior distribu-
tions (van Bergen et al., 2015) offer a straightforward interpreta-
tion of the uncertainty in determining stimulus properties from
cortical responses.
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