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Making decisions can be messy. Consider deciding whether 
to take a job in a new city, whether to accept an applicant to 
a graduate program, or whether a company should invest 

in a new factory. Multiple, seemingly incommensurate, predictors 
of outcomes must be weighed against each other, and potential ben-
efits and costs of the choice must be considered against the like-
lihood of their occurrence. Fortunately, decision theory gives us 
clear, quantitative prescriptions for how to make optimal decisions. 
Unfortunately, people generally fail to make decisions that comply 
with optimal theory. Psychologists over the last several decades have 
reveled in pointing out the many ways in which people’s decision-
making diverge from such optimality, giving rise to cognitive illu-
sions and substantial bias1,2. Many of the lessons from this literature 
on judgement and decision-making have found their way into the 
neuroscience of economic or value-based decision-making, where 
biases are routinely captured by making probabilities subjective 
or by accepting that gains and losses are not symmetric. But what 
about perceptual decision-making that reflects what a decision-
maker senses about an objective, external reality, rather than deci-
sions based on internal, possibly idiosyncratic, preferences? Neural 
mechanisms of perceptual decision-making have had the opportu-
nity to be calibrated against the statistics of natural environments 
over evolutionary history and over the literally thousands of daily 
perceptual decisions we make as to where to look and how to inter-
pret what we see. These sorts of decisions have been quite fruitfully 
formulated in optimal terms in which evidence and outcomes can 
be quantitatively and precisely stated. Nonetheless, recent evidence 
suggests something messier lurking behind the curtain of optimal-
ity that must be acknowledged if we are to uncover the neural mech-
anisms underlying perceptual decision-making.

Optimality in perception
A crowning achievement of optimality theory in perception is 
the application of principles of statistical decision-making, in the 
form of signal detection theory, to psychophysical measurement3–5. 
Signal detection theory tamed a vexing problem for psychophysics: 
that detection of a signal in noise could be governed not just by 

sensory sensitivity, but a somewhat inconvenient and messy cog-
nitive factor or criterion (Box 1). Detection theory was validated 
by showing that subjects could be induced to change their false-
alarm rate by changing the probability of target presence and the 
relative expected value associated with hits versus correct rejects3,6. 
In contradiction to prevailing assumptions that false-alarm rates 
were simply guesses when sensory responses did not reach a high-
enough threshold, signal detection theory asserted that false alarms 
occurred when occasional noise rose above criterion and thus cor-
rectly predicted a negative dependency between false-alarm and 
miss rates3,4,7. Performance on a two-alternative forced-choice task 
could be predicted from the area under the receiver operating char-
acteristic curve measured from a detection task8, which is particu-
larly elegantly when subjects used a ratings scale from which a full 
receiver operating characteristic curve can be easily constructed9. 
These findings developed into the now familiar procedures for 
computing sensory sensitivity, or d′, independently of criterion and 
thus, seemingly, squarely defeating the problem of uncontrolled cri-
terion in psychophysical measurement.

Beyond this methodological contribution, signal detection theory 
provided a framework for testing human perceptual behavior against 
optimal benchmarks. The abscissa of the signal detection graph was 
conceived of as representing a quantity monotonically proportional 
to the likelihood ratio of signal presence compared to absence, with 
the assumption of independent equal variance Gaussian distribu-
tions. The optimal criterion then could be computed based on prior 
probability and expected value (Box 1) and human performance 
tested against these optimal expectations with reasonably good 
match3,5 (but see below). The likelihood ratio for a signal detection 
task was modeled by an ideal observer, i.e., an optimal model, typi-
cally a matched filter for the signal that could be correlated with the 
noisy stimulus. Considerations of the deviations in performance 
from the ideal-observer models led, among other things, to the con-
cept that human subjects may not know precisely the template of the 
signal they are asked to detect5 and that this sort of uncertainty might 
explain various aspects of perceptual behavior10–12. This idea has been 
echoed more recently in suggestions that behavioral variability might 
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be less the outcome of noisy neural representation and more subop-
timal inference, akin to a mismatch of the perceptual template with 
the stimulus to be detected13. A straight line can be drawn from the 
development of the optimality constructs of signal detection theory 
to many key developments in perception, including those in visual 
search12,14, mechanisms for attention15–19, the optimal combination 
of different sensory cues20, off-channel looking21–23, signal integra-
tion24,25, the neural basis of perceptual decision-making26,27, and opti-
mal accumulation of sensory evidence28–30.

Different considerations of optimality, namely how to maximize 
the efficiency of information representation and transmission in 
neural systems, led to considerable progress in explaining differ-
ent aspects of neural representation of perceptual stimuli. Barlow31 
highlighted that if firing an action potential is a cost to the nervous 
system, an efficient representation is one that assigns the smallest 
number of spikes to the most common stimulus. This optimal cod-
ing hypothesis firmly placed environmental statistics at the fore-
front for understanding neural codes. Indeed, imposing sparsity  
constraints on representing natural scenes was found to produce 
simple cell-like representations32. Measurements of natural scene 
depth helped to explain space perception33. Orientation distri-
butions in natural scenes explained perceptual biases and early 
sensory representations34. Perception of a variety of motion illu-
sions could be elegantly explained by a prior that biases speed 
perception toward slow35–38. Prior probability of a number of 
image statistics could be shown to be implicitly coded in neu-
ral representations39. Retinal representations could be viewed as 
whitening the redundancies of natural stimuli40. The distribu-
tions of different illuminants and surfaces provided explanations 
for color constancy performance41. The development of rods 
and cones in the retina could be explained by statistics of envi-
ronmental image ensembles42. Contour grouping was predicted 
by edge co-occurrence in natural images43. The fundamental 
insight of considering optimal representations is the governing  

idea behind predictive coding models of visual processing44  
in which, for example, end-stopping in primary visual cortex is  
interpreted as a mechanism to suppress the unnecessary transmission  
of redundant sensory information45. Environmental statistics are 
the basis for priors that guide perceptual inference in Bayesian 
accounts of sensory perception46,47 (Fig. 1).

Importantly, the utility of optimality theory in perception was 
not originally conceived as a test of behavior as being optimal per se. 
Recent debates, particularly around Bayesian theory, have argued 
that assumptions in optimal models—for example, the priors in an 
inference model—can be adjusted to make any behavior conform 
(or not conform) to optimality48–50. Conversely, many perceptual 
behaviors do not reach optimal standards51. But asking whether 
human perception is optimal or suboptimal was never the goal of 
optimal observer analysis. Indeed, Swets et al. articulate the goals 
as follows:

...whereas it is not expected that the human observer and the ideal 
detection device will behave identically, the emphasis in early stud-
ies is on similarities. If the differences are small, one may rule out 
entire classes of alternative models, and regard the model in ques-
tion as a useful tool in further studies. Proceeding on this assump-
tion, one may then in later studies emphasize the differences, the 
form and extent of the differences suggesting how the ideal model 
may be modified in the direction of reality. (p. 311)3

This notion that ideal observers are useful in ruling out alterna-
tive models and in leading to new hypotheses when discrepancies 
are inevitably found has been echoed by many proponents of opti-
mality analysis since52–55. In this view, considerations of optimality 
provide a quantitative framework for expressing hypotheses that 
generate testable predictions.

Heuristics
At about the same time that signal detection theory and ideal 
observer analysis were demonstrating the great value of building a 

Box 1 | Signal detection theory as an optimal theory of visual perception

When asked to detect the presence or absence of a signal, such 
as a dim light, a spatial pattern, or the presence of a bomb or a 
tumor in an X-ray image, one can consider the evidence or likeli-
hood ratio of presence versus absence (a, abscissa is proportional 
to log likelihood ratio) where actual signal presence (red curve) 
and absence (black curve) are associated with different probability 
distributions. An arbitrary criterion (dotted line) for deciding the 
threshold likelihood ratio for which to report presence results in 
different proportions of hits (signal correctly defined as present) 
or correct rejects (signal correctly defined as absent) and corre-
sponding errors (misses and false alarms). Criterion is a key cog-
nitive factor because if it is set too conservatively, the presence of 
a bomb could be missed, but if it is set too liberally, a patient may 
suffer from undue worrying about cancer when none is present. 
Signal detection theory provides an optimal formulation3 for set-
ting criterion β

β = ⋅
+

+
p signal absent
p signal present

V correct reject K false alarms
V hit K miss

( )
( )

( ) ( )
( ) ( )

Where p is the prior probability of signal presence or absence, V is 
the value of correct answers, and K is the cost of errors. By setting  
the criterion to β, the observer can optimize their expected gain. 
Thus, for an ideal observer maximizing expected gain, conditions 
in which prior probability of signal presence, value of hits, and 
cost of misses are high all promote shifting criterion to the left (b) 
and conditions where prior probability of signal absence, value of 

correct rejects and cost of false alarms are high promote shifting 
criterion to the right (c).

Signal detection theory and optimal criterion. Signal detection 
distributions (a) with optimal criterion for high (b) or low (c) prior 
probability for signal presence, value of hits and cost of misses.

b c

Signal
absent

Signal
present

Criterion

False alarmsMisses

Log-likelihood ratio of signal presence vs. absence

P
ro

ba
bi

lit
y 

de
ns

ity

Hits

Correct
rejects

a

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Review ArticleNATure Neuroscience

rational choice theory in perceptual psychology, developments in 
economic or value-based decision-making were busy tearing down 
the edifices of optimality in the form of viewing humans as ratio-
nal economic actors. Rational choice theory56 assumed that humans 
would consider the utility (typically a concave function of wealth57) 
of potential outcomes multiplied by their probability of occurence 
and make optimal decisions by choosing the option which provided 
the highest expected utility. Yet humans make paradoxical choices 
that violate even simple and seemingly unobjectionable axioms of 
rational choice theory58. While probabilities of 0 or 1 are not math-
ematically special, humans treat sure gains as more desirable than 
probabilistic gambles of equal expected value, thus demonstrating 
risk-aversion57,59. Losses are typically treated oppositely; humans 
choose more risky gambles to try to avoid sure losses60. While risk 

attitudes of this form could be accommodated by expected util-
ity theory, the framing or reference point2 of gambles can dictate 
whether a decision-maker treats an economic choice as a potential 
gain or loss, radically changing preferences despite there being no 
overall change in what is at stake. Transitivity of choice options, an 
axiomatic requirement61 for using expected utility to model choices, 
can be violated, particularly when decisions are made using multiple 
incommensurate criteria62. Even more fundamentally, real-world 
decisions often require decision-makers to seek out alternatives, for 
example when buying a house. Considering the cost associated with 
finding alternatives, Herbert Simon abandoned optimality in terms 
of maximizing gains in favor of a decision theory which seeks to 
find not the best solution, but one that “satisfices” the criterion that 
the decision-maker hopes to achieve:
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Fig. 1 | Visual illusions suggestive of optimality. The transduction of light into neural signals does not provide direct information about many aspects 
of the visual world, including three-dimensional (3D) structure, scale, and motion. Thus, neural mechanisms need to infer these properties, a process 
that Helmholtz145 described as “unconscious inference.” Visual illusions highlight this inferential nature of vision and have been championed as evidence 
for optimal Bayesian inference in vision46,47. a, For example, a concave (or hollow) mask appears convex (bottom two faces on left cube appear convex 
even though all three faces are concave, as can be seen on the top face). This hollow mask illusion46 can be construed as interpreting the ambiguous 3D 
structure using a prior for convex facial forms. b, An object moving behind an aperture (left) is consistent with many different directions of motion (right), 
but observers see this motion as moving perpendicular to the viewable edge, which is the direction consistent with the slowest speed. This and other 
illusions of motion can be explained by the use of a prior for slow motion when motion signals are ambiguous35–38. c, Shading cues make the bumps in the 
middle appear as depressed into the page and the others as coming out of the page. This suggests the usage of a prior that light is coming from above146, 
since the bumps are all rotated copies of each other and are equally interpretable in the opposite 3D configuration if light were coming from below.  
d, Forced perspective photographs can achieve depth and scale illusions by carefully arranging a foreground object with respect to a background object 
to make it look, for example, like a huge hand is grasping a tiny sun. These illusions exploit inferences based on perspective, lighting, color, and size cues, 
as well as a bias for observers to reject the veridical interpretation of the scene, which requires viewing from a special vantage point rather than a generic 
one. This suggests a prior for a generic viewpoint and lighting angle147,148. e, The apparent scale of a photograph can be made to appear miniature (compare 
to original, inset) by blurring parts of the image to mimic the narrow plane of focus obtained by photographing a miniature model and increasing the 
color saturation and contrast. This suggests a sophisticated use of priors by the visual system to disambiguate scale, one presumably learned not over 
evolutionary history, but over encountering photographs of toy models. While these illusions are all suggestive of the inferential nature of vision, it should 
be noted that they do not necessarily require probabilistic computation. Moreover, even if Bayesian computation is employed, the computations may not 
be optimal if the priors used are approximate and not veridical149.
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“decision makers can satisfice either by finding optimum solutions 
for a simplified world, or by finding satisfactory solutions for a more 
realistic world” (p 498)63

In short, optimality theory faced strong empirical challenges to 
the view of humans as rational economic actors when confronted 
with actual human behavior compared to theoretic ideals.

Optimality theory in nonperceptual decision-making has also 
been clearly threatened when it comes to making explicitly cognitive  

decisions involving probabilities. Daniel Kahneman and Amos 
Tversky famously demonstrated a number of cognitive illusions 
(Box 2) in which people demonstrate base-rate neglect. That is, 
they readily neglect prior probabilities in assigning probabilities to 
events, even when the priors are clearly given, the person knows the 
base rates, and the evidence given is demonstrably uninformative64. 
This base-rate neglect phenomenon is important because it affects 
how we evaluate all sorts of information, from genetic tests in which 
a prior probability of a disease must be considered to the validity 
of inferences that can be made with new evidence from scientific 
studies. Even when human subjects correctly use prior information, 
they tend not to update their decision criteria enough to account 
for new evidence, a phenomenon that was labeled65,66 as being a 
“conservative Bayesian.” People, even trained scientists, make a 
number of stereotyped errors in trying to evaluate the probabil-
ity of random events67, particularly when sample sizes are small68. 
Moreover, people have systematic biases when trying to generate 
random numbers69. These and other ways in which humans fail to 
use optimal statistical reasoning were extensively documented, and 
broad categories of these failings were labeled as different forms of 
heuristic, rather than optimal, reasoning1,2. It is worthwhile to note 
that there have been critiques of some of the conclusions of biases, 
based on what the meaning of probability is for a single event, how 
framing of questions can make some of the cognitive illusions dis-
appear, and other considerations that might make biased behavior 
appear more rational70–72. Pulling back from these specific critiques, 
it should be obvious that there can be no single characterization of 
human behavior as being optimal or biased, as humans can perform 
the same behavioral task in different ways depending on context 
and task demands.

While optimal formulations of complex humanlike cognitive 
functions have been ascendant in cognitive science, many have 
corresponding heuristic solutions. Bayesian statistical algorithms 
have become increasingly powerful, able to solve reasoning prob-
lems such as one-shot classification of handwritten characters73, 
linguistic communication74 and learning75, discovering structure 
in data76, assigning responsibility for the consequences of another’s 
actions77, categorical perception78, inductive reasoning79, time per-
ception80, and sensorimotor integration81. While these algorithms 
elegantly find optimal solutions, underneath the hood are heavy 
computations that estimate posterior distributions using tech-
niques like Gibbs sampling and the Metropolis–Hastings algorithm. 
While some have seen potential direct analogs to these sampling 
algorithms in the momentary fluctuations of neural responses82,83, 
heuristic solutions can often accomplish the task with much more 
simplicity. For example, rather than recreating a full posterior dis-
tribution from many samples, often only a few84 will suffice to get 
one close to the solution (Fig. 2b). When given partial evidence of 
the length of an event (for example, how long an Egyptian pharaoh 
has reigned85), human subjects (at least in aggregate86) can appar-
ently use the correct form of the prior distribution to estimate the 
full length. While this optimal calculation is arrived by multiplying 
prior and likelihood together, heuristic solutions can quickly find 
the best estimate depending on the shape and parameterization of 
the prior distribution (Fig. 2f). For example, the correct answer for 
a prior with a power-law distribution is given by simply multiplying 
the evidence by a fixed multiplier, and for an Erlang distribution, 
only a constant needs be added to the evidence85. Notably, these 
heuristics simplify the computation by foregoing direct multiplica-
tion of prior and evidence distributions together, but still require 
subjects to have knowledge of the correct prior distribution.

These heuristics that appear to govern human cognitive and 
value-based decision behavior can be formally defined as efficient 
solutions to problems that ignore part of the relevant information 
or the full computation87. The mathematician George Pólya cham-
pioned the idea of teaching students the process of discovering 

Box 2 | Cognitive illusions suggestive of heuristics

While visual illusions have often been interpreted in an opti-
mal framework, cognitive illusions that were meant as analo-
gies to visual illusions point out ways in which humans behave 
in a heuristic fashion by neglecting basic properties of statistical 
decision-making. (a) For example, base-rate neglect was demon-
strated in a series of experiments64 in which subjects were asked 
whether the descriptions given were of an engineer or a lawyer 
and the instructions given clearly state the relevant base rates 
(i.e., the prior probability of being an engineer or lawyer, 30/70 
or 70/30 for different subject groups). When subjects were given 
descriptions such as Example 1, they found the description more 
representative of an engineer, regardless of whether they had 
been told that engineers or lawyers had a higher base rate. While 
this might be expected of Bayesian reasoning if subjects believed 
the description to be perfectly reliable, when asked about de-
scriptions like Example 2, in which subjects rated the description 
as uninformative, subjects tended to report 50% without respect 
to the base rate. But see ref. 72. (b) Another well-known cognitive 
illusion is the conjunction fallacy. Undergraduates were found to 
rate the probability of option 6, that Linda is a bank teller, lower 
than that of option 8, even though the conjunction of a being a 
bank teller and active in the feminist movement by basic rules of 
probability must be lower150. But see ref. 71.

(a) Base-rate neglect
Instructions: A panel of psychologists have interviewed 

and administered personality tests to 30 engineers and 70 
lawyers, all successful in their respective fields. On the basis of 
this information, thumbnail descriptions of the 30 engineers 
and 70 lawyers have been written. You will find on your forms 
five descriptions, chosen at random from the 100 available 
descriptions. For each description, please indicate your 
probability that the person described is an engineer, on a scale 
from 0 to 100.

Example 1: “Jack is a 45-year-old man. He is married and 
has four children. He is generally conservative, careful, and 
ambitious. He shows no interest in political and social issues and 
spends most of his free time on his many hobbies which include 
home carpentry, sailing, and mathematical puzzles.”

Example 2: “Dick is a 30-year-old man. He is married 
with no children. A man of high ability and high motivation,  
he promises to be quite successful in his field. He is well liked  
by his colleagues.”

(b) Conjunction fallacy
“Linda is 31 years old, single, outspoken and very bright. She 

majored in philosophy. As a student, she was deeply concerned 
with issues of discrimination and social justice, and also 
participated in antinuclear demonstrations.

Linda 1) is a teacher in elementary school 2) works in a 
bookstore and takes Yoga classes 3) is active in the feminist 
movement 4) is a psychiatric social worker 5) is a member 
of the League of Women Voters 6) is a bank teller 7) is an 
insurance salesperson 8) is a bank teller and is active in the 
feminist movement
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mathematical proofs through the application of various heuristics88. 
This use of heuristics spread early into the artificial intelligence lit-
erature as psychologists and computer scientists teamed up to solve 
problems that were thought to encompass many aspects of higher-
level human cognition89 by using Polya’s ideas of heuristic solution 
to teach computers to generate logical proofs90,91 or play chess92.  
It was quickly recognized that master chess players need not search 
the whole tree of possible moves, but search could use strategies like 
alpha-beta pruning of the decision tree and then assign values to 
board positions using heuristic evaluation93.

While heuristic solutions are often associated with bias and cog-
nitive illusions, they need not be considered suboptimal in a larger 
context. For example, when diagnosing a disease, rather than weight 
each symptom or predictor optimally, for example as one would do 
in linear regression, a simpler heuristic solution can be achieved 
by tallying each cue as either positive or negative evidence (i.e., 
weighting each predictor equally). This simplifies the calculation as, 
of course, it would be hard to compute a linear regression in one’s 
head and obviously a simple computer program can achieve better 
results if linear weighting is the right model. However, building a 
correct linear regression model, or for that matter, a modern deep-
learning model, requires a great deal of data and stationarity of the 
system. A tallying heuristic in this real-world context can then be 
construed as approaching an optimal solution, similarly to using 
robust regression techniques to get a more stable solution94. Many 
fierce arguments have occurred in the literature48,49,51 over asking 
whether humans are optimal or suboptimal, but heuristic solution 
to problems need not be viewed along these extreme dimensions. 
Instead, optimality can be viewed as deriving the goals of the system 
or what the nervous system should do and heuristics viewed as the 
way in which those goals are achieved by biological systems. Using 
Marr’s levels of analysis95, optimality is the computational goal and 
heuristics are the algorithms by which those goals are achieved.

Heuristics in perception
A slightly embarrassing fact for committed psychophysicists is that 
even well-trained observers in carefully designed experimental set-
tings stray from the behavioral rules that psychophysical procedures 
assume, displaying a variety of different, sometimes idiosyncratic, 

biases not typically part of an ideal observer model. If given the 
choice of two intervals, subjects can be biased to one interval or the 
other, something that can be consistent among observers but idio-
syncratic across different types of experiments96. Subjects rely on 
choices, rewards, and stimuli from previous trials even when these 
are irrelevant, for example, tending to repeat choices or to alternate 
more often than expected by chance97–103, something that has been 
known for a century104, sometimes rediscovered105,106, and typically 
ignored even though it causes systematic underestimates of percep-
tual sensitivity97,99. After errors, subjects tend to slow down107,108, 
perhaps to re-engage cognitive control109. Previous trial effects may 
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Fig. 2 | Heuristic solutions to sensory inference. a, When inferring 
properties of the sensory world (for example, the orientation of an 
edge), Bayesian inference provides the optimal solution of combining 
prior information (for example, the distribution of orientations in the 
environment) with noisy sensory evidence (for example, the stochastic 
spiking of orientation selective neurons) into a posterior distribution and 
choosing the best estimate using a read-out rule such as the maximum 
of this distribution, which optimizes the specified loss function of the 
decision-maker. While this computation in theory can be computed using 
probabilistic population codes131, other heuristic solutions that simplify the 
computational complexity are possible. b, Computing only a few samples 
from the posterior may provide reasonably accurate estimates, particularly 
if there is a cost to how long it takes to compute samples84. c, Rather than 
multiplying prior and evidence together, observers can switch118–120 between 
the two in proportion to their reliability. d, Instead of keeping a full prior 
distribution, one can use the last trial121, or last encounter with the statistic, 
as a proxy for the full distribution. e, For Gaussian distributions, only two 
statistics need to be tracked from the prior and evidence: the mean and s.d. 
The posterior mean is then just a weighted sum of the prior and evidence 
means and the reliability of the posterior can be similarly computed20. 
This achieves the optimal solution while avoiding the full computation of 
multiplying the distributions together, thus making it a heuristic evaluation. 
f, For some types of prior distributions, a simpler rule85, like adding  
or multiplying the evidence by a fixed constant, approximates the  
full computation.
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be used as a prior110,111, and sensory history representations in pos-
terior parietal cortex bias choices in rats even when not relevant103. 
Though these behaviors may not be conscious, they parallel sub-
jects’ biases in producing random number sequences69 or subjects’ 
false beliefs that alternations or runs are less likely than they actu-
ally are, as in the gambler’s fallacy. Being rewarded on previous tri-
als typically results in win-stay, lose-switch bias even for seasoned 
psychophysical observers99, and overtrained mice still tend to alter-
nate choices101. While subjects have the ability to learn the statistical 
structure of trials, they are more adaptable when statistics confirm 
their original bias rather than push against it99.

Close inspection of perceptual behavior that appears to satisfy 
the goals of optimal considerations can reveal hints of underlying 
heuristics. Criterion setting, the original obsession of the signal 
detection theorists, while shifted toward the optimal, never quite 
achieves an extreme enough setting demanded by the optimal solu-
tion112–114, a behavior suggestive of the same ‘conservative Bayesian’ 
strategies that ultimately toppled the rational economic actor 
model. Heuristic models in which observers forego the full opti-
mal calculation and instead simply set their criterion such that their 
response probability matches stimulus probability115 can account 
for the nonoptimal criterion setting114,116, and subjects can be biased 
by recent history117. While summary statistics of mean and s.d. of 
subject estimates in a motion-direction perceptual-estimation task 
conformed to the expectations of a Bayesian model, the actual dis-
tribution of trials suggest a switching heuristic (Fig. 2c) between 
prior and evidence on different trials in proportion to their rela-
tive reliability118. Children have been shown to use a similar switch-
ing heuristic in sensory cue-combination tasks before they learn to 
do full integration119,120. Other heuristic solutions have also been 
offered for Bayesian estimation tasks, such as using the past trial 
(or past few trials)121 as an estimate of the prior (Fig. 2d). In stud-
ies of visual search, optimal strategies can be approximated by heu-
ristic solutions122 or rules that deviate from the statistically optimal 
combination of information from multiple sources, such as taking 
the max11,12,123,124 or sum124,125. Models that weight imperfect cues to 
account for the perception of surface properties like gloss126 suggest 
heuristic computations. Indeed, the tradition of Gestalt psychology 
was built on trying to understand perceptual organization through 
defining a set of heuristic rules for grouping stimuli, such as laws of 
proximity, similarity, closure, symmetry, and common fate.

Outstanding questions, approaches, and challenges
While arguing whether a perceptual behavior demonstrates an opti-
mal or heuristic solution is futile in that it depends on how opti-
mality is defined, determining the algorithm by which a behavior 
is achieved is absolutely critical for neuroscience. There have been 
proposals to more explicitly test whether behaviors are optimal, for 
example, by testing for whether the behavior shows rapid adapta-
tion and transfer of priors to a new set of evidence127 or by devis-
ing behavioral tests in which optimal and heuristic solutions can 
be thoroughly tested128. However, the goal for neuroscientists is 
not necessarily to determine whether a behavior is optimal, but 
to understand how it is implemented in the brain129. If a behavior 
appears optimal but is solved by a heuristic algorithm, chasing after 
ways for the nervous system to perform optimal computations 
will be fruitless. Take for example the central computation in sta-
tistical inference of multiplying together probability distributions. 
Theorists have proposed elegant ways in which the stochasticity of 
neural populations implicitly represents probability distributions. 
Under certain assumptions of the noise characteristics of individual 
neurons, representations need not be explicitly transformed into 
likelihoods130, but instead computations like multiplying different 
distributions can be solved more simply through addition131. While 
there is an abundance of evidence that humans and animals132 can 
integrate conflicting sensory information in nearly optimal fashion, 

this does not guarantee that the algorithm used requires multiplying 
probability distributions. Indeed, if observers use heuristic max or 
sum decision rules as has been suggested in the visual search lit-
erature, the neural implementation of these operators, rather than 
optimal integration, should be the target of inquiry.

A major challenge to discovering the algorithms that underlie 
perceptual judgements are the limits of standard behavioral tech-
niques. Psychophysical procedures are rightly revered in perceptual 
science because of their ability to provide quantitative measure-
ments of sensory capacities, but at the same time, they provide a 
dramatically impoverished view of what they set out to measure, 
i.e., perception. In an era when we can use functional MRI, electro-
encephalography, or magnetoencephalography to capture responses 
across the whole human brain in a fraction of a second or to cap-
ture detailed population responses of thousands of neurons at once 
using calcium imaging, it is remarkable that the most commonly 
used behavioral techniques typically capture a single binary choice 
per trial. These choices, combined with reaction times, have been 
the mainstay of perceptual measurement and have propelled drift-
diffusion modeling, which can jointly account for both measure-
ments28–30. But much has likely been hidden by psychophysics in 
which we ask a yes–no or two-alternative forced-choice question; 
understanding the algorithms and heuristics that humans use to 
attain, in some cases, nearly optimal estimation behavior will require 
behavioral frameworks that allow the hallmarks of these algorithms 
to peek through133. For example, estimation tasks in which subjects 
are required to provide a continuous, one-dimensional readout of 
the color, orientation, direction, or location of what they see provide 
full distributions of behavior from which more complex aspects of 
perceptual decision formation has become evident80,111,118,134. More 
complex stimuli have often been proposed as ways to enrich our 
understanding of perceptual neuroscience. In particular, white-
noise stimuli provide means for estimating perceptual templates135. 
Moving forward, as more complex stimuli and more nuanced mea-
surements of behavior develop, including eye-movement measures, 
we will need an arsenal of different behavioral models that incor-
porate potential algorithms and heuristics to be models to compare 
human behavior to.

One might worry that, without optimality theory to guide the 
search for neural implementations of perceptual behavior, we are 
left with simply a bag of tricks136 from which no principle can be 
discerned and no single model may apply. Likely there is some truth 
to this idea, as vision is the result of evolutionary pressures and 
constraints that have adapted it to solve species- and niche-specific 
problems and not as a perfect inference machine that re-represents 
the visual world137. Nonetheless, viewed from this perspective, opti-
mality and heuristic considerations of perceptual behavior play 
complementary and synergistic roles, as optimality theory can pro-
vide precise goals for what a perceptual behavior can possibly attain 
and the various constraints of computational complexity and evolu-
tionary history are captured by the heuristic solutions that behavior 
may adopt to achieve those goals. Importantly, evolutionary and 
other pressures may only require satisficing of goals rather than 
optimizing. A solution that works under most circumstances may 
be good enough; visual perception can be fooled by illusions (Fig. 1),  
but the rarity of these special cases in which our visual system is in 
error is what makes them surprising and novel. While much effort 
has gone into rigorous and quantitative treatment of optimal goals of 
the system, less effort has been put into heuristic solutions, but this 
does not mean that heuristic behaviors cannot be computationally 
modeled. For example, prospect theory138 is a quantitative frame-
work that incorporated heuristic insights to correct the optimality 
driven theory that came before it. It built upon the expected util-
ity framework, but showed how treating probabilities as subjective 
weights139 rather than confining them to the mathematical rules of 
probability could better capture choice behavior (Box 3). A similar  
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unifying theory of perceptual behavior is beginning to be built 
that incorporates mechanisms that are nonoptimal. For example, 
increasingly, psychophysical modeling is using fitting procedures 
familiar from reinforcement learning to add stimulus, choice, and 
reward history components97,99,101 to better model perceptual deci-
sions (Box 3). To be sure, the goal is not to turn the clock back on 
perceptual neuroscience to descriptive heuristic models, but instead 
to incorporate insights from this literature into quantitative models 
of perceptual behavior.

The search for the behavioral algorithms that humans use to 
achieve nearly optimal behavior has led some to computer science 
in which considerations of computing and memory resources have 
led to efficient algorithms that can approximate difficult-to-com-
pute optimal solutions. For example, in statistical inference, where 
one might need to calculate the expectation of a complex posterior 
distribution, an algorithm known as importance sampling, which 
appropriately weights samples drawn from a simpler distribu-
tion, can provide an efficient approximation. This algorithm and 
its cousin, particle filtering, which applies the same principles to 
sequential inference problems by tracking a set of samples that 
are appropriately weighted and resampled through each iterative 

update, can be shown to produce solutions to cognitive problems 
that display characteristics similar to those of human behavior140. 
This approach, termed resource rationality, builds on the work of 
Simon141 in his consideration of costs for decision-makers in search-
ing for alternative choices to suggest a broader view of optimality 
which includes the cost of computation, resources, and accessibility 
of information84,118,142 and which has provided new normative views 
of classic heuristic behaviors142 such as the anchoring and adjust-
ment heuristic1. Similarly, optimal solutions for valuing states or 
actions in reinforcement-learning models must satisfy the Bellman 
equations, and algorithms such as temporal difference or q-learn-
ing can be shown to converge to this solution143. But the speed of 
convergence, the complexity with which a model or model-free 
system represents the world, and the correct balance of explora-
tion and exploitation make for trade-offs that might govern when a 
simpler, potentially more heuristic solution outweighs the flexibil-
ity and statistical efficiency of a more complex approach to using 
experience to optimally specify behavioral policies144. While these 
approaches are all promising, a major challenge for perceptual neu-
roscience is that, if one wants to understand neural computations 
underlying perceptual decisions, it is not enough to find heuristic 

Box 3 | Quantitative models of nonoptimal behavior

Behavior that does not conform to predictions of optimal theory 
can still be quantitatively accounted for. For example, several as-
pects of human value-based decision-making that were not pre-
dicted by optimal calculations can nonetheless be specified in a 
rigorous, quantitative framework called prospect theory138. Pros-
pect theory does require an initial nonquantitatively described 
step of editing gambles, after which value is described by the fol-
lowing equation





 λ
=

≥
− − <βv x

x if x
x if x

( )
0

( ) 0

a

Where α makes the value function concave for gains, β makes the 
function convex for losses, and λ controls the scale for losses and 
accounts for loss aversion by making losses result in larger changes 
relative to the same-sized gains (a; α = β = 0.88 and λ = 2.25). 
Probabilities are converted into subjective weights that no longer 
satisfy the rules of probability but account for a human subject’s 
tendency to overweight small probabilities and underweight large 
ones, which can be captured by the following equation

where γ is a parameter that controls the shape of the subjective 
probability function (b; γ = 0.61).

In perceptual decision-making, typical psychometric analysis 
of visual choice behavior does not take into account biases from 
previous trials, but frameworks borrowed from reinforcement 
learning can estimate choice history biases and therefore better 
isolate sensitivity to the stimulus. For example, consider a contrast-
discrimination task in which a subject must determine which of two 
stimuli presented to the left or right has higher contrast. Stimulus-
driven effects (c, top) can be modeled as the difference between the 
evoked internal response to the two stimuli. Trial history effects 
(bottom row) such as previous failure or previous success can be 
multiplied by weights (β) and entered into a logistic function to 
predict trial-by-trial choices, assuming a small number of lapses 
(λ)97,99,101. By fitting the shape of the internal response functions 
(top), trial history weights, lapses, and the slope of the logistic 
function (which specifies the amount of internal noise), sensory-
driven effects can be estimated separately from trial-history effects.
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solutions that share the same faults as human behavior; one needs 
to find the actual heuristic solution adopted in any given situation. 
Approximate algorithms developed for the limitations of modern 
computer architectures may not be the same ones that evolution has 
favored, as the costs of resources and computations are not directly 
comparable. Proponents of the use of these computational meta-
phors make no claim that sampling, for instance, is implemented by 
the brain142, just that heuristic behaviors can be understood as com-
ing from constraints imposed by limitations of resources.

Optimal principles have served perceptual neuroscience well 
by strictly formulating testable hypotheses, but one should not for-
get that human behavior is endlessly full of surprises. Sometimes 
these surprises come in the form of clever, simple, heuristics. The 
understanding of these heuristics can expose how some simple and 
elegant shortcut can achieve an end that otherwise seems daunt-
ingly complicated. When this is the case in perceptual neuroscience, 
we should rejoice, as it sets us on a much simpler course for how to 
understand the neural bases of perceptual behavior.
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