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Abstract—Can the human brain itself serve as a model for a
systems neuroscience approach to understanding the
human brain? After all, how the brain is able to create the
richness and complexity of human behavior is still largely
mysterious. What better choice to study that complexity
than to study it in humans? However, measurements of
brain activity typically need to be made non-invasively
which puts severe constraints on what can be learned about
the internal workings of the brain. Our approach has been to
use a combination of psychophysics in which we can use
human behavioral flexibility to make quantitative measure-
ments of behavior and link those through computational
models to measurements of cortical activity through mag-
netic resonance imaging. In particular, we have tested vari-
ous computational hypotheses about what neural
mechanisms could account for behavioral enhancement
with spatial attention (Pestilli et al., 2011). Resting both on
quantitative measurements and considerations of what is
known through animal models, we concluded that weighting
of sensory signals by the magnitude of their response is a
neural mechanism for efficient selection of sensory signals
and consequent improvements in behavioral performance
with attention. While animal models have many technical
advantages over studying the brain in humans, we believe
that human systems neuroscience should endeavor to
validate, replicate and extend basic knowledge learned from
animal model systems and thus form a bridge to
understanding how the brain creates the complex and rich
cognitive capacities of humans.
This article is part of a Special Issue entitled: Contribu-

tions From Different Model Organisms to Brain Research.
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INTRODUCTION

A peculiar phenomenon had taken hold of the elevators of
the Meyer building when I first arrived as a post-doc at
NYU’s Center for Neural Science. Students, post-docs
and professors all seemed to have a different algorithm
for hitting the buttons on the elevator. Some would
simply hit the button for their floor and wait. Others,
though, would use different cryptic combinations of
buttons, stretching their fingers wide to simultaneously
press the floor they wanted and the current floor. For
some, the order was apparently crucial – hitting first
their floor before reaching for the current floor. Others
used the exact opposite order. After inquiring around
about this curious behavior, I was earnestly informed
that these combinations of button presses were required
to make the doors of the elevator close more quickly – a
matter of great importance to impatient occupants of the
building. But, what could explain the diversity of different
techniques I had witnessed? After some time in the
department, I developed my own (incompletely tested)
theory – that the elevator had a time-out of a few
seconds, after which any button press, or combination
thereof, would trigger the doors to close. Thus, the
occupants of the building had all learned various
completely different behaviors, all of which produced the
same reward of a swift start to the elevator ride.

ADVANTAGES OF HUMAN BEHAVIOR FOR
SYSTEMS NEUROSCIENCE

The natural experiment in the Meyer building elevators is
not unlike what animals trained to perform systems
neuroscience tasks must be encountering; unable to give
explicit verbal instructions, experimenters must rely on
animals learning tasks implicitly through rewards. But, if
humans faced with these situations apparently can learn
a variety of different cognitive strategies, can we be sure
that implicitly trained animals are learning what we think
we are teaching them? Two typically worrisome aspects
of implicit animal training are incremental performance
improvements and lack of generalization. Often it takes a
long period of time to train an animal to do a task as
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simple as following a spot of light with their eyes – despite
the fact that you could explicitly instruct another person to
do this in a single sentence. Performance improves
incrementally over the course of weeks, rather that all at
once. After long training on one task, a small seemingly
trivial change, like modifying the location or color of
targets can often require weeks more incremental
training. That is, animals can, frustratingly, often fail to
generalize. Again, simple explicit instructions given to a
human can easily circumvent such problems of
generalization. Of course, both humans (as in the Meyer
elevators) and animals (Busse et al., 2011) can exhibit
superstitious behaviors that do not directly relate to the
demands of the task. But, being able to give explicit instruc-
tions and the ability to examine the incredibly flexible
behavior of humans are considerable advantages for
human systems neuroscience.

Underlying what might be considered nuisances of
implicitly instructing animals to perform tasks are deep
questions about whether animals performing model
tasks are good experimental models of the cognitive
behaviors they are meant to emulate. To be sure, the
difficulties sketched out above are routinely overcome
with careful and determined behavioral training and a
fantastic wealth of knowledge has been gained from
awake behaving physiology experiments with various
animal model systems. Nonetheless, both of these
troublesome properties of training may influence
experimental outcomes. Long training in a single task
may affect the very neural systems that one seeks to
understand. For example, extended training on a motion
discrimination task (Newsome et al., 1989; Britten et al.,
1992; Parker and Newsome, 1998) has been associated
with neurons in the intermediate and deep layers of the
superior colliculus showing motion selectivity to passively
viewed stimuli (Horwitz and Newsome, 1999, 2001), a
property which they do not exhibit without such extended
training (Horwitz et al., 2004). Neural responses may also
be different depending on how well animals have been
trained to make correct task generalizations. For exam-
ple, monkeys trained to select the oddball target from a
stimulus array display significantly different response
properties in the frontal cortex dependent on whether they
were trained to always detect a single color target (in
which case they do not generalize the task) compared
to when they were trained on trials with differently colored
oddball targets and exhibit correct generalization of the
task (Schall and Hanes, 1993; Bichot et al., 1996).
Clearly, both of these examples above represent careful
sets of experiments with thoughtful analyses of resulting
behavior and physiology which have resulted in an impor-
tant and deeper understanding of how task training and
learning can affect representations in the brain. However,
they also point to the possibility that extended, narrow
task training without a very careful and thoughtful
approach may prejudice behavior to be inflexible, thus
extinguishing the very aspect of cognition that is of para-
mount interest.

Humans as subjects offer distinct advantages for
behavioral training, one that we capitalized on with
experiments aimed at understanding neural

mechanisms that improve behavioral performance with
visual spatial attention (Pestilli et al., 2011). Spatial atten-
tion was described and its effects rigorously demon-
strated through behavioral techniques in humans dating
back over a century (Helmholtz, 1867). Endogenous spa-
tial attention can be operationally defined as improved
behavioral performance given prior information about
the task-relevance of a particular location. It is distin-
guished from exogenous attention which is captured by
abrupt onset of stimuli (Yantis and Jonides, 1984) inde-
pendent of subject’s prior knowledge of target location
(Nakayama and Mackeben, 1989). The ‘‘improved behav-
ioral performance’’ part of this definition of endogenous
spatial attention is key. How much better is behavioral
performance with spatial attention? If behavioral improve-
ments can be quantitatively measured, that sets the
benchmark for neural measurements; the quantitative
change in behavioral performance without any overt man-
ifestation like physically orienting to a stimulus needs to
be explained by changes in neural activity.

Quantitating this improvement in performance is
fundamental – if one finds any physiological correlate of
attention, how else will one know if that effect is big, small
or just enough to explain the behavioral phenomenon?
Monkey experiments are the most behaviorally advanced
for studying attention in animal models (Moran and
Desimone, 1985; Spitzer et al., 1988; Motter, 1993;
Treue and Maunsell, 1996; Luck et al., 1997; Treue and
Martı́nez Trujillo, 1999; McAdams and Maunsell, 2000;
Reynolds et al., 2000; Cohen andMaunsell, 2009). Numer-
ous neural consequences of spatial attention in elegant
behavioral designs have been discovered in monkeys
(Desimone and Duncan, 1995; Reynolds and Chelazzi,
2004). However, only a much smaller minority of experi-
ments has tried to account in a quantitative way for how
neural changes can account for performance benefits with
attention (e.g. Cook and Maunsell, 2002; Cohen and
Maunsell, 2009, 2010). Instead, monkeys are often trained
to discriminate some change on one target while ignoring
similar changes on another target. While this certainly
engages selective responding to one set of stimuli, it does
not give a quantitative measure of how much behavioral
performance is improved with attention.

We started our analysis in Pestilli et al. (2011) with
a behavioral paradigm designed to quantitatively mea-
sure spatial attention’s effect on behavioral perfor-
mance. Subjects were either cued to one or all stimuli
and asked to discriminate a small change in contrast
on one of the stimuli, thus encouraging subjects to
focus or distribute spatial attention, respectively. By
using staircase procedures (Levitt, 1971; Watson and
Pelli, 1983) we could measure precisely how much
behavioral performance enhancement there was with
attention by noting a change in contrast discrimination
threshold between focused and distributed attention.
Our quantitative behavioral measurements of attention
were built on a solid foundation of experimental work
in humans that have shown quantifiable effects of atten-
tion (Posner, 1980; Pashler, 1998) and set the stage for
our examination for what neural mechanisms could
have accounted for that change.
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MEASURING CORTICAL ACTIVITY IN HUMANS

While using human subjects greatly facilitated gathering
quantitative behavioral evidence of spatial attention,
what good would such measurements be for
understanding brain mechanisms when existing tools to
study neural activity in humans are so crude? We
measured blood oxygenation level-dependent contrast
(BOLD Ogawa et al., 1990, 1992) using magnetic reso-
nance imaging, but the limitations of this technique are
well known and have been extensively reviewed and
debated (Logothetis, 2008). Fundamentally, BOLD is a
poor measure of neural activity because it is not a mea-
sure of neural activity, nor is it even really a measure.
BOLD is sensitive to the concentration of deoxygenated
hemoglobin (Ogawa et al., 1993), but is typically not cali-
brated to measure this, or any other quantity (Davis et al.,
1998; Blockley et al., 2012; Mezer et al., 2013), quantita-
tively. The concentration of deoxygenated hemoglobin in
turn is related to at least three different physiological vari-
ables; the cerebral metabolic rate of oxygen consumption,
cerebral blood flow and cerebral blood volume (Buxton,
2012), which are all related to neural activity through
mechanisms that are just beginning to be understood
(Attwell et al., 2010; Bélanger et al., 2011). Given the
apparent crudeness of the BOLD measurement, should
it not be relegated to asking crude localization questions,
rather than the types of mechanistic questions about how
to quantitatively link neural responses in humans to
behavioral enhancement with attention that we were inter-
ested in?

In fact, BOLD measurements, when deployed with
finesse, for example in defining visual field
representations, are currently the most refined tool that
we have. Over a century ago, another technology, the
high-powered rifle, left narrow destructive paths of
bullets through the cortex of Japanese soldiers and left
an awful legacy of the Russo Japanese war. But from
careful study of the visual field deficits in these injured
soldiers, Tatsuji Inouye determined the topography of
primary visual cortex and correctly deduced that the
representation was flipped upside down, the fovea was
at the occipital pole, and that there was a cortical
magnification of the foveal representation (Inouye, 2000;
Adams and Horton, 2001). Modern imaging techniques
developed just after the introduction of BOLD (Engel
et al., 1994; Sereno et al., 1995; DeYoe et al., 1996),
make measurements of visual fields routine in normal
human subjects – a methodological triumph over analy-
ses based on lesion patients. The technique has rapidly
led to the characterization of multiple topographic repre-
sentations in the visual cortex, some of which may even
be unique to humans (Schluppeck et al., 2005; Larsson
and Heeger, 2006; Pitzalis et al., 2006; Sereno and
Huang, 2006; Swisher et al., 2007; Wandell et al., 2007;
Silver and Kastner, 2009; Wandell and Winawer, 2011).
In monkeys (Brewer et al., 2002) it can establish in one
experiment the numerous topographic representations
of the visual world that took decades of research to find
with single-unit measurements (Zeki, 1978; Van Essen
et al., 1992) and provide quick resolution to long-debated
representations (Kaas and Lyon, 2001) – though it should

be noted that contamination by imaging artifacts from
sinuses (Winawer et al., 2010) may lead to considerable
debate in visual field maps made from functional imaging
data (Tootell and Hadjikhani, 2001; Brewer et al., 2005;
Hansen et al., 2007). Even in the rodent system which
is widely considered to have among the best tools avail-
able for systems neuroscience, topographic mapping
techniques borrowed from human imaging (Kalatsky and
Stryker, 2003) coupled with optical measurements of
intrinsic signals akin to BOLD (Grinvald et al., 1986) are
used to map visual field representations (Schuett et al.,
2002; Andermann et al., 2011; Marshel et al., 2011). In
our hands, retinotopic mapping in humans with BOLD
imaging allowed us to study the coordinate frame
(Gardner et al., 2008) and modulations by eye position
(Merriam et al., 2013) across multiple visual areas in the
brain in single experiments (see also: Sereno and
Huang, 2006; d’Avossa et al., 2007; McKyton and
Zohary, 2007; Golomb and Kanwisher, 2012). Contrast
that to decades of animal experiments in monkey parietal
cortex which were required to first establish these same
properties (Andersen and Buneo, 2002). Topographic
representations allowed us in our attention experiments
to compare responses across multiple visual areas, but
even more importantly to measure responses separately
for different targets based on their spatial localization.
Thus, BOLD measurements excel at measuring topo-
graphic properties of visual representations which is a
particularly useful property for addressing systems neuro-
science questions.

Beyond topography, BOLD imaging is a good tool for
making measurements of contrast–response in visual
cortex – a measurement critical for linking our
quantitative behavioral measurements of contrast
sensitivity enhancements with spatial attention to
underlying neural mechanisms. Image contrast can be
measured in a variety of different ways (Bex and
Makous, 2002) but corresponds to the overall difference
between dark and light portions of an image. Image con-
trast is a fundamental property of visual stimuli in that it
controls visibility, just as when one increases contrasts
on a video display, the higher the contrast the more visible
the stimulus. Neural responses in visual cortex of mice
(Busse et al., 2011), cats and monkeys (Albrecht and
Hamilton, 1982; Sclar et al., 1990) all show monotonically
increasing responses with contrast (but see Sani et al.,
2013), termed a contrast–response function. BOLD mea-
surements in visual cortex of humans behave exactly as
expected if they are reflective of a population of neurons
with monotonically increasing contrast response (Tootell
and Taylor, 1995; Boynton et al., 1996, 1999; Tootell
et al., 1998; Logothetis et al., 2001; Avidan et al., 2002;
Olman et al., 2004; Gardner et al., 2005). Indeed, only a
single scaling factor is needed to match contrast–
response between BOLD measurements and those from
similarly measured single-units (Heeger et al., 2000).
Simultaneous measures of hemodynamic signals with
optical imaging techniques in experimental animals and
neural response have found a linear (Cardoso et al.,
2012) or threshold-linear relationship (Logothetis et al.,
2001) between the two. The advantage of being able to
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make BOLD measurements simultaneously from multiple
topographically defined visual areas has shown that much
like several decades of single-unit studies have found
(Rolls and Baylis, 1986; Sclar et al., 1990; Cheng et al.,
1994), higher-order visual areas are more contrast invari-
ant than lower-order visual areas. That is, as soon as con-
trast is increased enough to make a stimulus visible,
higher-order visual areas respond with near maximal
activity (Tootell et al., 1995; Avidan et al., 2002), a prop-
erty that may be dependent on attention (Murray and
He, 2006; Yue et al., 2010).

Contrast–response measurements were of particular
interest to us because they have been studied
extensively in animal experiments of spatial attention,
showing a variety of effects that would be potentially
measurable with BOLD. Early measurements of
contrast–response with attention in monkeys showed a
‘‘contrast-gain’’ shift with attention – essentially the
whole contrast–response function shifted to the left
(Reynolds et al., 2000; Martı́nez-Trujillo and Treue,
2002). This change could be viewed as equivalent to
physically turning up the contrast of a stimulus and thus
make it more visible with attention. However, other stud-
ies argued for multiplicative gain changes in response
with attention (Lee and Maunsell, 2010) which have the
virtue of not changing the bandwidth of tuning functions
(McAdams and Maunsell, 1999). When applied to con-
trast–response they correspond to changes across all
contrasts which would make difference in contrast at all
levels of contrast potentially more discriminable. Still other
experiments argued for additive shifts of contrast–
response dependent on visibility (Thiele et al., 2009;
Pooresmaeili et al., 2010). These discrepancies in results
from different studies may be the result of changes in the
area over which animal subjects attended in various stud-
ies (Reynolds and Heeger, 2009), a theory for which now
there is some experimental support in humans (Herrmann
et al., 2010; Itthipuripat et al., 2014). Subsequent model-
ing efforts we have made (Hara et al., 2014) suggest that
if the theory is correct, some of the variability in measured
response patterns across different single units (Williford
and Maunsell, 2006) could result in the additive shifts in
contrast–response that we and others (Buracas and
Boynton, 2007; Li et al., 2008; Murray, 2008; Pestilli
et al., 2011) have measured with BOLD. Taken together,
these various changes in contrast–response reported
from the awake-behaving monkey literature were very
suggestive that effects of attention on contrast–response
were large and potentially measurable with BOLD in
humans, but would BOLD be sensitive enough to pick
up these changes?

Our experience with studying changes to contrast–
response with adaptation suggested that BOLD
measurements would be sensitive enough to pick-up
any of these potential changes with attention. A well-
known property of contrast–response is that it shifts
horizontally with adaptation to center around the
adapting contrast (Ohzawa et al., 1982, 1985; Sclar
et al., 1985; Bonds, 1991; Kohn and Movshon, 2003;
Solomon et al., 2004). That is, a remarkable change to
contrast–response occurs after several seconds expo-

sure to a stimulus presented with some adaptation con-
trast – the whole contrast–response shifts to center
around the adapting contrast. This shift centers the most
sensitive part of the dynamic range of the contrast–
response around the adapted contrast, potentially making
observers more sensitive to contrast changes that are
likely to occur in the environment. Measuring contrast–
response changes with adaptation we were able to verify,
for the first time, this property in humans (Gardner et al.,
2005). In doing so, we also discovered a peculiarity of
contrast–response in some higher visual areas like hV4;
responses less faithfully represented overall contrast
level, but instead increased regardless of whether con-
trast was increased or decreased and thus appeared to
respond to changes in contrast. We later found a similar
effect for motion coherence (Costagli et al., 2014) and
while our observations were originally made using fMRI
in humans, subsequent work in monkeys suggests that
there may be non-monotonic tuning curves for contrast
in V4 (Sani et al., 2013) which could underlay the effects
we originally discovered in humans. In summary, our
experiments on contrast adaptation formed the basis for
our attention experiments because they bolstered the
case that BOLD measurements of contrast–response
were picking up activity as expected about the population
of neurons responding to contrast. Moreover, measure-
ments of adaptation-related changes in BOLD contrast–
response suggested that it would be possible to measure
contrast–response changes with a cognitive factor like
attention.

LINKING HUMAN CORTICAL ACTIVITY TO
BEHAVIOR WITH COMPUTATIONAL MODELS

Having both a quantitative behavioral measure of the
benefits of spatial attention and a quantitative measure
of cortical response related to that perception we
needed a model to connect the two measurements –
something that was already well developed in the
human psychophysics literature (Nachmias and
Sansbury, 1974; Stromeyer and Klein, 1974; Foley and
Legge, 1981). In particular, if one knows the relationship
between contrast and response, simple models based
on signal detection in which psychophysical sensitivity
(that is d’) can be related to difference in response divided
by the standard deviation can be used to predict behav-
ioral effects. These models already had success in the
study of contrast sensitivity (Boynton et al., 1999) and
with surround suppression (Zenger-Landolt and Heeger,
2003) and we used them to study how attention effects
could be modeled. The behavioral effects of attention that
we measured quantitatively suggested large changes in
the slope of the contrast–response function, but, to our
surprise, these was no evidence for such changes in the
BOLD measurements we made in Pestilli et al. (2011).

As these simple models of contrast sensitivity could
not quantitatively explain our measurements, we turned
to another set of quantitative models also largely coming
from the human psychophysical literature which focused
on the selection of signals. In particular, our BOLD
measurements found little evidence for changes in the
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slope of contrast–response as would have been predicted
by signal detection models, but did, as has been reported
by many groups (Buracas and Boynton, 2007; Li et al.,
2008; Murray, 2008; Chen and Seidemann, 2012), find
large increases in response at cued locations for all con-
trast–additive offsets. We reasoned that these changes in
contrast–response could improve behavior by aiding in
the selection of the correct sensory signals for cognitive
processing. That is, when attention is focused on a single
target, the response to that stimulus is increased in early
visual cortex and as a consequence that signal is selected
for perceptual processing. When attention is distributed to
multiple locations, all the responses to the stimuli have
similar magnitude which does not lead to any advantage
for any particular signal for pooling and thus responses
are averaged together resulting in poor performance
because relevant and irrelevant responses are averaged
together. Thus, in our model, the larger the neural signal,
the more efficiently it would be selected for pooling. The
model that we developed to quantitatively link our BOLD
measurements to behavioral measurements was built
on theoretical models of attention (Pelli, 1985; Lee
et al., 1999; Itti and Koch, 2001) and search (Palmer
et al., 2000; Eckstein et al., 2009) which have focused
on how sensory signals are weighted in perception. We
have found that the model can also reproduce behavioral
effects of parametrically changing the prior probability that
a target is relevant (Hara and Gardner, 2012) and have
validated a prediction that the model makes – that simply
increasing the contrast of distractors and thereby increas-
ing their response magnitude would disrupt performance
(Pestilli et al., 2011). These effects of distractors are sim-
ilar to other stimulus-driven (Palmer and Moore, 2009;
Yigit-Elliott et al., 2011) and transient (Nakayama and
Mackeben, 1989) attention effects that have previously
been reported to capture attention with abrupt onsets
(Yantis and Jonides, 1984).

HUMAN SYSTEMS NEUROSCIENCE AS A LINK
IN OUR UNDERSTANDING OF THE BRAIN

We concluded that an efficient selection mechanism
could account for the attentional behavioral
enhancement we observed, but could the inferences
that we made be on more solid ground if we had used
animal models in which more invasive, yet potentially
revealing, experimental techniques would have been
possible? Indeed, many aspects of neural responses
that have been associated with attentional
enhancement, like reductions in variability and
correlation (Cohen and Maunsell, 2009; Mitchell et al.,
2009), increased efficacy of synaptic transmission
(Briggs et al., 2013) or changes in neural synchrony
(Fries et al., 2001; Womelsdorf et al., 2006; Gregoriou
et al., 2009; Bosman et al., 2012) are likely not measur-
able with BOLD. Nuanced aspects of neural population
dynamics (Churchland et al., 2012; Mante et al., 2013),
particularly when neurons show mixed selectivities
(Rigotti et al., 2013) that have been associated with flex-
ibility in behavior cannot be easily assessed. Important
questions of causality which are typically studied through

inactivation (Lovejoy and Krauzlis, 2010; Zénon and
Krauzlis, 2012) or stimulating neural circuitry (Moore
and Fallah, 2001; Moore and Armstrong, 2003) are diffi-
cult to study in a similar way in humans as technologies
like transcranial magnetic stimulation are only beginning
to be deployed in ways where they can act to substitute
or enhance neural signals rather than just disrupt them
(Abrahamyan et al., 2011). Despite all this, it is important
to remember that all modes of study of the brain are lim-
ited in one way or another. While it is always tempting to
view one’s own model as some sort of pinnacle, in reality,
each experiment we conduct, no matter what model sys-
tem we use, only gives us a tiny window into the mas-
sively complex and still beautifully mysterious workings
of our brains.

What role should human systems neuroscience have
in the overall pursuit of understanding the brain?
Perhaps the biggest caveat for all animal models is
simply that they are not the human brain and for many,
understanding the human brain is an ultimate goal. This
is not to say that knowledge gained from animal
experiments cannot be used to make inferences about
how the human brain works. But those inferences need
to be connected to and validated with measurements in
humans. Different measures of brain activity may
occasionally lead to seeming contradictions (Boynton,
2011). Rather than take a myopic view through the lens
of one’s own model system and techniques, we should
view these discrepancies as opportunities to seek a uni-
fied view of different measures of brain activity and behav-
ior that will lead to new insights. Developments in the
study of human cognition (Tenenbaum et al., 2011) pro-
vide the possibility of understanding many complex
behaviors of humans such as inductive reasoning
(Kemp and Tenenbaum, 2008) or language processing
and acquisition (Chater and Manning, 2006; Frank and
Goodman, 2012) that are difficult, if not impossible, to
study in animal systems. The goal of human systems neu-
roscience should be to link our developing understanding
of human higher cognition with the burgeoning knowledge
of the neural circuitry that give rise to these unfathomably
rich abilities that our brains are capable of.
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Zénon A, Krauzlis RJ (2012) Attention deficits without cortical
neuronal deficits. Nature 489:434–437.

(Accepted 24 June 2014)
(Available online 2 July 2014)

J. L. Gardner / Neuroscience 296 (2015) 130–137 137

http://refhub.elsevier.com/S0306-4522(14)00537-5/h0505
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0505
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0505
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0510
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0510
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0510
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0515
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0515
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0515
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0520
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0525
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0525
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0530
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0530
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0535
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0535
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0540
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0540
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0540
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0545
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0545
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0545
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0550
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0550
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0550
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0555
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0555
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0560
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0560
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0560
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0565
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0565
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0565
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0570
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0570
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0575
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0575
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0575
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0580
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0580
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0580
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0585
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0585
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0585
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0585
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0590
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0590
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0595
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0595
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0595
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0600
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0600
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0600
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0605
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0605
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0605
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0610
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0610
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0610
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0615
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0615
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0615
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0620
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0620
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0620
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0625
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0625
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0625
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0630
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0630
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0635
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0635
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0635
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0635
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0640
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0640
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0640
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0645
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0645
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0645
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0650
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0650
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0655
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0655
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0655
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0660
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0660
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0665
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0665
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0670
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0670
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0675
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0675
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0675
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0680
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0680
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0680
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0685
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0685
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0685
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0690
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0690
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0690
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0695
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0695
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0695
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0700
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0700
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0700
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0705
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0705
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0710
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0710
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0710
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0715
http://refhub.elsevier.com/S0306-4522(14)00537-5/h0715

	A case for human systems neuroscience
	Introduction
	Advantages of human behavior for systems neuroscience
	Measuring cortical activity in humans
	Linking human cortical activity to behavior with computational models
	Human systems neuroscience as a link in our understanding of the brain
	Conflict of interest
	Acknowledgments
	References


