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First published September 3, 2014; doi:10.1152/jn.00729.2013.—Prior in-
formation about the relevance of spatial locations can vary in speci-
ficity; a single location, a subset of locations, or all locations may be
of potential importance. Using a contrast-discrimination task with four
possible targets, we asked whether performance benefits are graded
with the spatial specificity of a prior cue and whether we could
quantitatively account for behavioral performance with cortical activ-
ity changes measured by blood oxygenation level-dependent (BOLD)
imaging. Thus we changed the prior probability that each location
contained the target from 100 to 50 to 25% by cueing in advance 1,
2, or 4 of the possible locations. We found that behavioral perfor-
mance (discrimination thresholds) improved in a graded fashion with
spatial specificity. However, concurrently measured cortical responses
from retinotopically defined visual areas were not strictly graded;
response magnitude decreased when all 4 locations were cued (25%
prior probability) relative to the 100 and 50% prior probability
conditions, but no significant difference in response magnitude was
found between the 100 and 50% prior probability conditions for either
cued or uncued locations. Also, although cueing locations increased
responses relative to noncueing, this cue sensitivity was not graded
with prior probability. Furthermore, contrast sensitivity of cortical
responses, which could improve contrast discrimination performance,
was not graded. Instead, an efficient-selection model showed that even
if sensory responses do not strictly scale with prior probability,
selection of sensory responses by weighting larger responses more can
result in graded behavioral performance benefits with increasing
spatial specificity of prior information.

vision; attention; contrast; efficient-selection; gating

PRIOR INFORMATION about the relevance of particular spatial
locations to a given visual perceptual task can guide spatial
attention and thereby improve behavioral performance (Car-
rasco 2011; Pashler 1998). Prior information need not be
all-or-none; multiple locations may possibly be relevant. Op-
timal use of prior information of increasing spatial specificity
should result in graded behavioral improvements. That is, with
fewer prior cued locations, the prior probability that any one
cued location contains a target increases, and performance
should be enhanced (Ciaramitaro et al. 2001). We asked about
the neural mechanisms involved in the use of prior information
of different spatial prior probabilities during a contrast-dis-
crimination task by concurrently measuring behavioral perfor-
mance and cortical activity with blood oxygenation level-
dependent (BOLD) imaging. Computational modeling was
used to assess how measured changes in cortical response
could quantitatively account for behavioral performance.

We used a contrast-discrimination task so that we could test
quantitative links between cortical activity and behavioral
performance (Boynton et al. 1999; Zenger-Landolt and Heeger
2003). Because neural responses monotonically increase with
contrast in early visual cortex (Albrecht and Hamilton 1982;
Boynton et al. 1999; Gardner et al. 2005; Logothetis et al.
2001; Sclar et al. 1990; Tolhurst et al. 1981; Tootell et al.
1995), discriminating which stimulus had a higher contrast can
be achieved by selecting the stimulus that evoked a larger
response. Thus, increasing the slope of the relationship be-
tween contrast and response can improve contrast-discrimina-
tion performance by enhancing the difference in response to
stimuli of different contrasts (Boynton et al. 1999; Foley and
Legge 1981; response enhancement Legge and Foley 1980;
Morrone et al. 2002; Nachmias and Sansbury 1974; Pestilli et
al. 2011; Zenger-Landolt and Heeger 2003). Reducing the
noise in the cortical representations can also improve perfor-
mance by reducing the overlap in response distributions to
different stimuli (Briggs et al. 2013; Cohen and Maunsell
2009; noise reduction Mitchell et al. 2009). In previous work,
we found that neither of these two mechanisms of sensory
enhancement alone can quantitatively account for behavioral
performance improvements with attention in contrast-discrim-
ination tasks (Pestilli et al. 2011). Instead, computational
analyses suggested that efficient selection, implemented as a
weighting of responses to each stimulus according to the
magnitude of response, could account for improved behavioral
performance. In the present study, we tested whether this
“efficient-selection model” could quantitatively account for
performance as the prior probability of spatial cues was sys-
tematically manipulated.

Unequal weighting of sensory evidence depending on atten-
tional priority (Itti and Koch 2001) of particular locations or
features is a common aspect of many theoretical approaches to
attention (Desimone and Duncan 1995; Lee et al. 1999; Pelli
1985) and has an appealing interpretation in statistical deci-
sion-making accounts; the weights correspond to the prior
probability (Eckstein et al. 2009) that a location is relevant. In
this view, improvements in the sensitivity of sensory signals
(i.e., sensory enhancement enabled via mechanisms such as
response enhancement and noise reduction) play a less impor-
tant role in improving behavioral performance compared with
the preferential weighting of sensory signals from relevant
locations. Since activity in the human visual cortex is known to
be greater for cued locations (Kastner and Ungerleider 2000),
one way to weight information from different locations accord-
ing to relevance is to proportionally scale cortical responses
with prior probability.
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In this study, we found that although parametrically increas-
ing prior probability resulted in graded improvements in be-
havioral performance, responses in early visual cortex did not
strictly scale with prior probability. Whereas responses were
smallest when prior probability was 25%, no significant dif-
ference in response magnitude was observed between locations
with 50 and 100% prior probabilities. The cue sensitivity,
which is the difference in response between cued and uncued
locations, also did not significantly vary with prior probability.
Finally, contrast sensitivity, which is the sensitivity to contrast
differences quantified as the slope of the relationship between
stimulus contrast and response, an important determinant of
performance in contrast-discrimination tasks as explained
above, did not vary with prior probability. However, a model
of efficient selection, which used a nonlinear pooling mecha-
nism to weight responses, could account for graded improve-
ments in behavioral performance even though cortical re-
sponses did not strictly scale with prior probability.

MATERIALS AND METHODS
Subjects. Five human subjects (2 women and 3 men, ages 21–36,

all but one naive to the purpose of the experiment) with normal or
corrected-to-normal vision participated in the study. Experimental
procedures were conducted with prior written consent from each
subject and were approved in advance by the RIKEN Brain Science
Institute Functional MRI Safety and Ethics Committee. Each subject
participated in multiple functional experiments: one session for reti-
notopic mapping (1.5 h, consisting of at least 10 retinotopic scans
lasting 4.5 min each) and five to seven sessions of the main experi-
ment (2.0 h each, consisting of 1 or 2 localizer scans and 6–10
experiment scans lasting 7 min each).

Main experimental task. Subjects performed a contrast-discrimina-
tion task both inside and outside the scanner. The task was two-
interval forced choice in which the subjects had to report the temporal
interval for which one of four sinusoidal gratings had a higher contrast
(Fig. 1). Subjects were instructed to view two 0.6-s presentations of
the four grating stimuli (Stim1 and Stim2) separated by a 0.3-s
interstimulus interval (ISI) while fixating on a central cross (1° ! 1°
visual angle and 1 pixel wide, 125.85 cd/m2 outside, 4.05 cd/m2 inside
the scanner). The contrast at one and only one grating location (target,
top right quadrant in Fig. 1) was slightly incremented in one of the
temporal intervals (randomly chosen, Stim2 in Fig. 1). The location of
this target grating was indicated by a small postcue (green line, 0.5°
long and 5 pixels wide, stemming from the center of the fixation cross
at a 45° diagonal) during the 1.5-s-long response interval (Resp in Fig.
1). Subjects were required to report the temporal interval in which the
cued target had a higher contrast with a button press (by keyboard
input of “1” or “2” outside the scanner, by 2 handheld buttons
corresponding to either the “1st” or “2nd” interval inside the scanner).
After the button press, subjects received feedback on their response by
a color change of the fixation cross (green for correct, red for
incorrect). The intertrial interval (ITI) was 1.0 s outside the scanner.
To sample different BOLD response overlaps, inside the scanner, the
ITI was randomized between 1.5 and 12.0 s in steps of 1.5 s. After
running several hundred practice trials outside the scanner until
performance stabilized, subjects performed an average of 1,016 and
1,191 trials outside and inside the scanner, respectively.

The main experimental manipulation in the task was the number of
stimulus locations cued during the initial 1.0-s cue interval of each
trial (Cue in Fig. 1). Before stimulus presentation, a cue consisting of
small black lines (0.5° long and 5 pixels wide, 0.73 cd/m2 outside,
0.13 cd/m2 inside the scanner) appeared near fixation, pointing to
either one, two, or four of the stimuli, always including the target
location (Fig. 1, A, B, and C, respectively). These cues stemmed from

Time

B    Two-cues (50% prior probability)

A   One-cue (100% prior probability)

   Four-cues (25% prior probability)

Cue (1.0 s) Stim1 (0.6 s) ISI (0.3 s) Stim2 (0.6 s) Resp (1.5 s) ITI (1.5 to 12.0 s)

C 

Fig. 1. Schematic diagram of the contrast-discrimination task in which spatial prior probability was manipulated by parametrically changing the number of cued
locations. At the beginning of each trial (Cue interval), subjects were presented with valid cues pointing to either 1 (A), 2 (B), or all 4 (C) of the possible target
locations, thus changing prior probability from 100 to 50 to 25%. The cues persisted while the stimulus, consisting of 4 contrast gratings, appeared in 2 temporal
intervals (Stim1 and Stim2) separated by an interstimulus interval (ISI). In 1 of the 2 intervals (Stim2 in this figure), the contrast in 1 of the cued locations (target;
top right quadrants in this figure) was slightly incremented. Following both stimulus presentation intervals, the cues were replaced by a green response postcue
(appears dark gray in this figure) that indicated the target. Subjects reported with a button press in which interval the target contrast appeared greater (Resp).
The intertrial interval (ITI) was fixed at 1.5 s for trials performed outside the scanner was and pseudorandomized between 1.5 and 12.0 s for trials performed
inside the scanner.
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the center of the fixation cross at 45° diagonals and persisted through-
out fixation and stimulus presentation (Cue, Stim1, ISI, and Stim2).

The stimulus was an array of four sinusoidal gratings displayed on
a gray background. The gratings were arranged at 6° eccentricity with
one grating per visual quadrant. Each grating had a 3° radius, spatial
frequency of 2 cycles/deg, and orientation orthogonal to its polar
angle position and was displayed drifting at 1 Hz in opposite direc-
tions each interval. To reduce spatial uncertainty of the grating
locations, the four possible target locations were indicated throughout
the experiment by a white circular frame (6° eccentricity, 7.5° internal
diameter). To reduce temporal uncertainty, the fixation cross color
was changed to black during the two stimulus presentation intervals.

Contrast-discrimination performance was tested for three pedestal
contrasts of 12.5, 25, and 50%. To avoid subjects being able to
compare spatial locations rather than temporal intervals, the other
three nontarget gratings were shown at an individually randomized
contrast chosen from one of the pedestal contrasts. The randomization
of contrasts at each location was also intended to minimize any
differential adaptation effects (Dhruv et al. 2011; Dhruv and Caran-
dini 2014; Kohn 2007; Ohzawa et al. 1982) that would bias the
strength of responses at any particular location. However, responses
within a trial might have been subject to rapid adaptation affects
(Müller et al. 1999), which may make responses to different contrasts
more similar over the course of a trial (Gardner et al. 2005).

For the target grating, a 1-up-2-down staircase (Levitt 1971) was
used to set the increment in contrast ("c), which was added to the
pedestal contrast in one of the temporal intervals. Independent and
pseudorandomly interleaved staircases were used for each cue condi-
tion and each pedestal contrast to maintain task performance around
70.7% for all conditions. The independent staircases balanced task
difficulty across all conditions and all pedestal contrasts so that
subjects would always be performing the task at a near-threshold
level, eliminating any potential confound with task difficulty between
conditions.

Contrast-discrimination function. Contrast-discrimination task per-
formances between different cue conditions were evaluated using
their contrast-discrimination functions. Contrast-discrimination func-
tions defined the relationship between each pedestal contrast (c) and
the increment in contrast ("c) required at each pedestal contrast to
obtain threshold-level performance. Contrast-discrimination functions
were computed separately for each cue condition from the behavioral
data as follows. For each pedestal contrast and cue condition, a

maximum likelihood procedure (Wichmann and Hill 2001) was used
to fit subject responses with a Weibull function (Weibull 1951):

p!!c" " #1

2
# $$!1 # e##!c

% $m" &
1

2
, (1)

where p("c) is the probability of being correct given a contrast
increment of "c, $ is the lapse rate, % is the "c for which the
probability correct reaches 63% of the difference between chance and
maximal performance, and m is the slope of the psychometric func-
tion. Subjects performed on average 238 trials per psychometric
function, sufficient for accurate determination of discrimination
thresholds (Kontsevich and Tyler 1999), the main measure of interest.
From the fitted Weibull function, we computed the discrimination
threshold as the contrast increment "c that would give a correct rate
p("c) of 76% for that particular cue condition and pedestal contrast.
Contrast-discrimination functions were then constructed for each cue
condition by plotting these discrimination thresholds as a function of
pedestal contrast (Fig. 2).

Stimulus presentation. Outside the scanner, the visual stimuli were
presented on a Dell Trinitron 21-in. flat-screen CRT monitor (Dell,
Round Rock, TX) with a resolution of 1,280 ! 960 pixels and a
100-Hz refresh rate placed at a distance of 50.5 cm from the subject’s
eyes to obtain a field of view of 43° ! 32°. Inside the scanner,
subjects used an adjustable mirror system to view an image that was
rear-projected by an Avotec Silent Vision 6011 LCD projector (Avo-
tec, Stuart, FL) onto a screen placed inside the bore of the magnet at
a distance of 38.5 cm to obtain a minimum field of view of 50° ! 20°.
The projector had a resolution of 800 ! 600 pixels and a 60-Hz
refresh rate. Both displays were calibrated to a linearized gamma
using a Topcon SR-3A-L1 Spectroradiometer (Topcon, Tokyo, Ja-
pan). We dynamically adjusted the 10-bit gamma table to achieve the
best luminance resolution possible (while maintaining linearized out-
put) for displaying each set of gratings. All stimuli were generated
using MATLAB (The MathWorks, Natick, MA) and MGL
(http://justingardner.net/mgl).

Eye position measurements. An EyeLink 1000 eye tracking system
(SR Research, Mississauga, ON, Canada) was used outside the scan-
ner, and iView eye tracking software (SensoMotoric Instruments,
Teltow, Germany) coupled to an external camera (Avotec) was used
inside the scanner to confirm that subjects maintained fixation
throughout the task. Both systems recorded corneal reflections of an
external infrared light source and tracked the center of the pupil. A
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Fig. 2. Contrast-discrimination functions averaged across all subjects show graded improvement in performance with increasing prior probability. Discrimination
thresholds were computed separately for trials performed inside (A) and outside (B) the scanner, as well as across all trials combined (C). Contrast-discrimination
functions for the 100 (dark blue lines), 50 (medium blue lines), and 25% prior probability conditions (light blue lines) were plotted on a semi-log axis. Insets
show the same set of contrast-discrimination functions on a log-log axis. D: discrimination thresholds for different spatial arrangements of the 2 cues in the 50%
prior probability condition did not show significant differences (means across pedestal contrasts). Error bars indicate SE of means across subjects. Error bars for
the 100% prior probability condition in A–C are smaller than the size of the symbols.
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brief calibration was performed before each continuous session out-
side the scanner and before at least every other functional scan inside
the scanner. Eye tracking setup was successful for all sessions outside
the scanner. However, due to physical constraints imposed by subject
and mirror positioning inside the scanner, the eye tracker could only
be successfully set up in 44% of scanner sessions. Subjects fixated on
a central yellow dot and then on subsequent yellow dots that appeared
5° to the left, right, above, and below the center of the screen. This
calibration data was used to perform an affine transformation of the
acquired eye tracking data to the position of the eye in degrees of
visual angle.

For trials performed outside the scanner, the mean eye position
during stimulus presentation (Stim1 and Stim2 combined in Fig. 1)
was calculated for each cue condition. Blink artifacts were removed
(100 ms before and after each blink). Eye positions were analyzed for
differences across cue conditions (separately for each cue configura-
tion, i.e., actual stimuli cued). For trials performed inside the scanner,
the subject’s eye position was monitored by the experimenter. One
subject had complete eye tracking and calibration data from inside the
scanner, which was analyzed similarly to the data acquired outside the
scanner.

MRI acquisition and preprocessing. MRI data were acquired on a
Varian Unity Inova 4 Tesla whole body MRI system equipped with a
head gradient system (now Agilent Technologies, Santa Clara, CA).
High-resolution three-dimensional (3-D) anatomic MR images (T1
weighted) were acquired with a birdcage radiofrequency (RF) coil
(Nova Medical, Wilmington, MA). Functional data (T2* weighted)
were acquired using a volume RF coil to transmit and a four-channel
receive array (Nova Medical). Sponge padding was used to restrict
head motion. The subject’s respiration was monitored using a pressure
sensor, and the heartbeat was measured with a pulse oximeter. These
data were later used along with RF pulse timings to correct the
functional data for physiological fluctuations.

For each subject we acquired high-resolution 3-D anatomic images
of the brain (“canonical anatomy”) in a separate scanning session,
which could be used for segmentation of the gray matter, surface
generation, and alignment with data from separate functional sessions.
In general, we collected two T1-weighted images (MPRAGE TR 13
ms, TI 500 ms, TE 7 ms, flip angle 11°, voxel size 1 ! 1 ! 1 mm,
matrix 256 ! 256 ! 180) and one T2-weighted image (FLASH TR 13
ms, TE 7 ms, flip angle 11°, voxel size 1 ! 1 ! 1 mm, matrix 256 !
256 ! 180). The two T1-weighted images were averaged then divided
by the T2-weighted image to reduce global inhomogeneities in image
contrast (Van De Moortele et al. 2009). The public domain software
FreeSurfer (http://surfer.nmr.mgh.harvard.edu) was then used to seg-
ment the gray-matter from the white-matter and generate surfaces
(Dale et al. 1999). Flattened representations of the cortical surface
were used for drawing regions of interest, including visual areas and
subregions thereof which contained responses to a specific stimulus
grating. These regions of interest were constrained to voxels that
intersected the gray matter. Analyses were all conducted on the
original untransformed data and the surfaces and flattened represen-
tations were used solely for data visualization.

Each functional experimental session (including retinotopy scans)
included a 3-D T1-weighted anatomical image for registration with
the canonical anatomy and multiple T2*-weighted functional scans.
The anatomic image [magnetization-prepared rapid acquisition gradi-
ent-echo (MPRAGE): TR 11 ms, TI 500 ms, TE 6 ms, flip angle 11°,
voxel size 1.72 ! 1.72 ! 1.72 mm, matrix 128 ! 128 ! 64] was
typically taken in the same orientation as the functional images. These
anatomic images were used with an automated procedure (Nestares
and Heeger 2000) to find the best affine transformation to align the
images from each session to the canonical anatomy. BOLD changes
(Ogawa et al. 1990) in image intensity were measured using T2*-
weighted gradient recalled multi-shot echo-planar imaging with sen-
sitivity encoding (SENSE) (Pruessmann et al. 1999). For retinotopic
mapping, 21 slices were acquired with a volume acquisition time after

SENSE acceleration of 1,572 ms (2-shot, SENSE acceleration factor
2, TE 25 ms, flip angle 55°, voxel size 3 ! 3 ! 3 mm, matrix 64 !
64). For the main experiment, 16 slices were acquired with a volume
acquisition time after sense acceleration of 1,200 ms (2-shot, SENSE
acceleration factor 2, TE 25 ms, flip angle 51°, voxel size 3 ! 3 ! 3
mm, matrix 64 ! 64). Oblique slices were chosen to maximally cover
the occipital visual areas, approximately perpendicular to the calcarine
sulcus.

Preprocessing for functional data in each session were performed in
the following order: corrections for physiological fluctuations, SENSE
reconstruction, motion compensation, detrending, and then high-pass
filtering. Cardiac and respiratory fluctuations of image intensity were
removed using a retrospective estimation and correction procedure
(Hu et al. 1995). For the SENSE reconstruction, a mask image was
manually drawn around all signal voxels and used to improve image
reconstruction quality (Pruessmann et al. 1999). Following recon-
struction, standard procedures were used for motion compensation
(Nestares and Heeger 2000). Time courses were then linearly de-
trended and high-pass filtered (cutoff of 0.01 Hz) to remove low
temporal frequency drifts. BOLD signal change (%signal change) was
computed by dividing the time course of each voxel by its mean
intensity over the course of each scan.

Retinotopy and localizer. Visual fields were determined based on a
retinotopy performed in a separate scanning session. High-contrast
radial checkerboard patterns were presented as either an expanding or
contracting ring or a 90° rotating wedge. Each scan consisted of 10.5
cycles (25.2 s per cycle) of the ring expanding/contracting or the
wedge completing a full rotation with a sampling rate of 16 volumes
per cycle (168 volumes per scan). The first half-cycle of each scan was
discarded from the analysis. Each session consisted of four scans of
the ring stimulus (2 expanding and 2 contracting) and at least six scans
of the rotating wedge stimulus (3 clockwise and 3 counterclockwise),
interleaved. Time courses from all scans were time-shifted 2 or 4 s,
and time courses from contracting ring and counterclockwise wedge
scans were time-reversed and averaged with the time courses for
expanding and clockwise wedge scans, respectively. The averaged
ring and wedge responses were Fourier transformed to obtain the
response amplitude, phase, and coherence (normalized amplitude) at
the stimulus frequency. Visual fields were defined according to
published criteria (Gardner et al. 2008; Wandell et al. 2007).

To identify the voxels corresponding to each of the four grating
locations, we used a stimulus localizer scan. These scans were
performed in the beginning and/or end of each functional session so
that each subject completed a total of 8–15 localizer scans in total
across all experimental sessions. The localizer stimulus consisted of
flickering sinusoidal gratings (identical in size and parameters to those
of the experimental task) that were presented sequentially; the grat-
ings were on for 12 s and then off for 12 s at each location and were
temporally staggered so that each sequential location was turned on 6
s after the previous one. This 24-s stimulus cycle was repeated 10
times during each localizer scan. A correlation analysis was per-
formed on the measured data, and voxels were included in regions of
interest if the response had a coherence value #0.5 for visual areas
V1–4 and 0.3 for V3A. Responses to each individual grating location
were identified according to the phase of the response. Mislocalized
voxels whose phase did not correspond with the rest of the voxels in
the same visual area, probably due to partial voluming artifacts, were
removed from the analysis. Using responses localized to each grating,
we were able to separately analyze responses to each grating based on
both the image contrast of that grating and whether it was cued or not
cued in each of the three cue conditions.

Contrast-response function. To compute contrast-response func-
tions, a deconvolution analysis (for details see Gardner et al. 2005)
was used to determine the mean hemodynamic response to the grating
in each location. The average time course in each visual area for each
grating location was computed, and the responses following stimulus
presentation for 15 s were calculated assuming linear summation for
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responses that had temporally overlapped. These responses were
calculated separately for each combination of pedestal contrast (12.5,
25, and 50% contrast), cue condition (25, 50, and 25% prior proba-
bility conditions), and whether the location had been cued or uncued
(note that in the case of 25% prior probability where all locations were
cued, there was no uncued condition). This lead to a total of 15
conditions (3 pedestals ! 5 conditions, where the 5 conditions
comprise conditions in which the location was cued in all 3 prior
probability conditions plus conditions in which the location was not
cued in 2 of the prior probability conditions). The responses for each
of the 15 conditions were then averaged across the 4 locations. A
gamma function was fit to this deconvolved response, and the mag-
nitude of response was determined by the amplitude of this function.
These response magnitudes were then averaged across subjects and
plotted as a function of grating contrast to yield the contrast-response
functions for each visual area and each cue condition (Fig. 3).

For each location, a single response was used to average the
cortical activity over the two stimulus intervals because the ISI in our
task design was relatively short (0.3 ms) and the contrast shown in the
two stimulus intervals were either the same (for nontargets) or offset
by only a small change in contrast (for targets). To account for the
small change in contrast that took place during one of the two stimulus
intervals at the target location, the contrast responses for cued loca-
tions (Fig. 3, solid lines) were offset along the x-axis by the average
contrast increment across all trials multiplied by 0.5 (since the
increment occurred in 1 of 2 intervals) and were scaled by the prior
probability (1, 0.5, or 0.25, since increment occurred in all, one-half,
or one-quarter of the locations averaged, respectively).

Responses may be artificially inflated due to poststimulus modu-
lations (Sergent et al. 2011) at cued target locations, so we adjusted
responses to account for this effect. For the 50 and 25% prior
probability conditions, we calculated responses at the cued locations

separately for whether they were later the target for discrimination
(cued target) or not (cued nontarget). We then used the cued nontarget
response as the estimated responses to cued locations because it would
not be corrupted by poststimulus modulations of the sort reported by
Sergent et al. (2011). For the 100% prior probability condition there
was no cued nontarget location by definition, so we estimated the size
of the poststimulus modification as the average difference between
cued target and cued nontarget responses for the 25 and 50% prior
probability conditions (assuming that poststimulus modification for
the 100% prior probability condition would be similar in magnitude to
other prior probability conditions) and subtracted this from the 100%
cued target response on a subject-by-subject basis. This procedure
made quantitative but not qualitative differences in the estimated
responses and did not change any conclusions.

Efficient-selection model. We fit a model for the selection of
sensory responses to the measured contrast-discrimination and mea-
sured contrast-response functions, which we have described in detail
previously (Pestilli et al. 2011). Briefly, the model simulated 10,000
trials in which simulated responses based on the measured contrast-
response functions from all four locations were combined using a
pooling rule (Eq. 2), and then discrimination thresholds were com-
puted that would yield a performance equivalent to that measured by
the contrast-discrimination function (d= $1, 76% correct assuming
unbiased responses). On each simulated trial, the response for each
grating location was pulled from a Gaussian distribution with its mean
set to the response based on the measured contrast-response functions
for the particular grating contrast and cue condition, and the standard
deviation (') was a model parameter. Intermediate values for contrast
response were estimated using linear interpolation of the measured
contrast-response functions, the slopes and intercepts of which were
included as model parameters. These four response values were
combined using the following equation:
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Fig. 3. Contrast-response functions averaged
across all subjects show that cue sensitivity is
positive and similar for the 100 and 50%
spatial prior probability conditions in all vi-
sual areas. Blood oxygen level-dependent
(BOLD) response magnitudes were greater in
cued (solid lines) than uncued locations
(dashed lines) for all prior probability condi-
tions (A). B shows plots of the same data as in
A on a single graph for direct comparison.
Note that the data points for cued locations
(solid lines) were shifted right to account for
the threshold contrast increment (see MATERI-
ALS AND METHODS, Contrast-response func-
tion, for details). C: cue sensitivity, which is
the difference in cued and uncued response
magnitudes (averaged across pedestal con-
trasts), are shown for the 100 (dark blue bars)
and 50% prior probability conditions (me-
dium blue bars). Error bars indicate SE of
means across subjects.
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where R is the pooled response, ri is the response at location i, and k
is a parameter that smoothly varied the operation from averaging the
response across the four locations (k $ 1) to maximizing (k $ %). k
was used as a model parameter. On each simulated trial, pooled
responses were computed for each temporal interval (one of which
included a contrast increment at the target location), and the response
that had the larger pooled magnitude was taken as the choice of the
simulated observer. If this choice matched the interval in which the
contrast increment appeared, the trial was marked correct. Model
parameters ' and k and the slope and intercept of the contrast-
response functions were adjusted until the model produced the best fit
to the measured contrast-response and measured contrast-discrimina-
tion data in the least-squares sense. The model therefore had either 8
or 9 parameters (depending on whether cued and uncued locations
were assumed to have the same ' or not; see RESULTS for details) to fit
24 data points.

RESULTS

Graded contrast-discrimination performance with prior
probability. We tested subjects’ ability to discriminate con-
trasts while varying the prior probability that any given loca-
tion contained the stimulus to be discriminated. Subjects
viewed four sinusoidal grating stimuli of different contrasts
(chosen from 12.5, 25, and 50%) that appeared in two brief
temporal intervals (Fig. 1, see MATERIALS AND METHODS, Main
experimental task, for more details). In one of the temporal
intervals, a single grating stimulus (target) was presented with
a threshold increment in contrast. All other grating stimuli
were presented with the same contrast in both temporal inter-
vals. During the response interval, the target was postcued with
a green line segment near fixation and the subjects were asked
to report with a button press in which temporal interval the
target grating had appeared with a higher contrast.

The key manipulation used to vary prior probability across
trials was to change the number of grating locations cued in
advance that could potentially contain the target. This was
done by cueing with a white line segment near fixation either
one, two, or four possible locations during the cue interval at
the beginning of each trial (Fig. 1, first temporal interval of A,
B, and C, respectively). The target grating was always one of
the locations cued. Therefore, the prior probability that any
cued location would be the target was varied from 100 to 50 to
25% probability as more locations were cued. The number of
prior cues as well as the pedestal contrast of the target were
pseudorandomly interleaved across trials. Task difficulty was
maintained to be the same across all these conditions by
running independent staircases to adaptively determine con-
trast increments that maintained threshold contrast-discrimina-
tion performance separately for each condition.

Behavioral performance improved in a graded fashion as a
function of prior probability (P & 0.001 for main effect of prior
probability, 3-way ANOVA over prior probability, pedestal
contrast, and where the trials were performed, inside or outside
the scanner). Performance was best (smallest discrimination
thresholds) when prior probability was set to 100% by only
cueing the target location in advance (Fig. 2, dark blue curves,
1 cue). Decreasing prior probability to 50% (Fig. 2, medium
blue curves, 2 cues) resulted in worse performance compared

with 100% prior probability (P & 0.001, paired t-test across
subjects and pedestal contrasts), and thresholds for the 25%
prior probability condition were worse than for the 50% prior
probability condition (P & 0.001, paired t-test). Performance
was 2.1- and 3.3-fold worse in the 50 and 25% prior probability
conditions, respectively, compared with the 100% prior prob-
ability condition. The overall pattern of behavioral perfor-
mance did not vary significantly whether the task was per-
formed inside or outside the scanner; therefore, behavioral
analysis was performed on all trials combined (Fig. 2, A, B, and
C, respectively; P # 0.9 for where the trials were performed,
3-way ANOVA; see above). Subject eye positions were steady
across all cue conditions (P # 0.78 and P # 0.30 in the x- and
y-directions, respectively, for all possible pairs of cue condi-
tions, Student’s t-test). Inside the scanner, eye position mea-
surements were generally of insufficient quality for statistical
analysis; however, an analysis of one subject’s complete data
showed no significant difference in eye position for any pair of
cue conditions at a Bonferroni-corrected P value of 0.05.

Behavioral performance did not vary according to the spatial
arrangement of the two cued gratings in the 50% prior proba-
bility condition (Fig. 2D). Cued gratings could be in opposite
hemifields, the same hemifield, or diagonally across from each
other (Fig. 2D, bottom). These conditions therefore might be
more or less attentionally demanding depending on whether
attention can easily encompass locations across visual fields
(Abrams et al. 2012; Alvarez and Cavanagh 2005; Alvarez et
al. 2012 He et al. 1996). However, in our data, discrimination
thresholds did not differ significantly according to the position
of the cued, nontarget location relative to the target (Fig. 2D;
P # 0.3 for main effect of spatial arrangement of the 2 cues in
the 50% prior probability condition, 3-way ANOVA over
spatial arrangement of the 2 cues, pedestal contrast, and where
the trials were performed).

Contrast-discrimination performance was also affected by
the target pedestal contrast (P & 0.0016 for main effect of
pedestal contrast, 3-way ANOVA over prior probability, ped-
estal contrast, and where the trials were performed). Whereas,
typically, contrast-discrimination performance gets worse
(thresholds increase) as contrast is increased (Legge and Foley
1980; Nachmias and Sansbury 1974), performance for our task
became better as a function of contrast, particularly for the 25
and 50% prior probability conditions in which four and two
gratings were cued in advance, respectively. Averaged across
the 25 and 50% prior probability conditions, thresholds were
'1.3 and 1.8 times better at 25 and 50% contrasts, respec-
tively, than at 12.5% contrast. Our model of efficient selection
(Pestilli et al. 2011) can successfully account for the pattern of
results found in these data by taking into account the distract-
ing effect of the nontarget contrasts in each trial (see RESULTS,
Efficient-selection model predictions for distractor effects).

BOLD magnitude, cue sensitivity, and contrast sensitivity do
not strictly scale with prior probability. Simultaneously with
the behavioral measurements reported above, we recorded
cortical responses as measured by BOLD imaging at each
grating location to determine the effect of cue condition on
each response. Cortical responses were first separated into
responses associated with each visual area (V1–4 and V3A) as
determined by retinotopic criteria measured in a separate scan-
ning session (see MATERIALS AND METHODS, Retinotopy and
localizer). Locations within each visual area were then identi-
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fied with the use of a stimulus localizer sequence that was run
either once or twice during each of the five-to-seven scanning
sessions used for the main experiment for each subject. We
then computed the average response, assuming that temporally
overlapping responses sum linearly (Boynton et al. 1996), to
each trial type (either the 100, 50, or 25% prior probability
conditions), sorted by contrast of the grating at that location
and whether the grating was cued or uncued. Responses across
the four locations within each visual area were then averaged,
and the magnitude of response was reported (Fig. 3A shows
sorted responses for different trial types in separate columns,
and Fig. 3B displays all responses in Fig. 3A on the same axis).

Unlike behavioral performance, magnitude of cortical re-
sponses did not strictly scale with prior probability (Fig. 3A,
compare 1st, 2nd, and 3rd columns). Despite prior probability
being halved from 100 to 50%, cued locations had similar
response magnitudes (0.26 vs. 0.27, 0.09 vs. 0.11, 0.18 vs.
0.14, 0.59 vs. 0.63, and 0.30 vs. 0.32% signal change in
V1-hV4 and V3A, respectively, averaged across all pedestal
contrasts) that were statistically indistinguishable in all visual
areas studied (P # 0.28 in V1–4 and V3A, uncorrected for
multiple comparisons, paired t-test over subjects). Similarly,
on a subject-by-subject basis, only 12% of subject visual areas
(3 of 25) showed a significant difference (P # 0.05, t-test over
stimulus presentations) for cued responses when the spatial
prior probability was reduced from 100 to 50%. For the three
subject visual areas that had shown significant differences, one
showed an increase and two a decrease as prior probability
increased from 50 to 100%. Similarly, uncued responses
showed no statistical significance between the 100 and 50%
prior probability conditions in all visual areas studied (P (
0.06 in V1–4 and V3A, paired t-test; see above). If anything,
there was a counterintuitive trend toward less suppression of
the uncued responses in the 100% prior probability condition
(0.16 vs. 0.13, (0.05 vs. (0.10, (0.01 vs. (0.05, 0.45 vs.
0.47, and 0.16 vs. 0.21% signal change in V1-hV4 and V3A,
respectively, averaged across all pedestal contrasts). On a
subject-by-subject basis, only 32% of subject visual areas (8 of
25) showed a significant difference (P & 0.05, t-test over
stimulus presentations) with 6 showing, counterintuitively, less
suppression when prior probability was 100%. There was a
slight decrease in activity from 50 to 25% prior probability for
cued locations (0.27 vs. 0.22, 0.11 vs. 0.02, 0.14 vs. 0.04, 0.63
vs. 0.57, and 0.32 vs. 0.27% signal change in V1-hV4 and
V3A, respectively, averaged across all pedestal contrasts) that
reached statistical significance in V2 and V3 (P & 0.01, paired
t-test, see above) but not in other areas (P ( 0.14). Thus BOLD
magnitudes did not strictly scale with prior probability.

Changing prior probability also did not significantly change
cue sensitivity, the difference between cued and uncued re-
sponses (Fig. 3C). Cue sensitivity was positive in all visual
areas (indicating a larger response for cued locations) but was
similar in magnitude regardless of whether prior probability
was 100 or 50% (0.10 vs. 0.15, 0.14 vs. 0.21, 0.19 vs. 0.20,
0.45 vs. 0.47, and 0.14 vs. 0.11% signal change in V1–4 and
V3A, respectively, averaged across all pedestal contrasts). The
differences were not statistically significant (P # 0.13, paired
t-test) in all areas except in V2 (P $ 0.033), where cue
sensitivity was, paradoxically, greater with 50 than 100% prior
probability. On a subject-by-subject basis, only 16% of subject
visual areas (4 of 25) showed a significant difference (P &

0.05, t-test over stimulus presentations) between the 100 and
50% prior probability conditions, with all four showing, para-
doxically, greater cue sensitivity in the 50% prior probability
condition. Thus cue sensitivity was not graded with prior
probability. Note that because the 25% prior probability con-
dition lacked any uncued locations, we could not evaluate cue
sensitivity for this condition.

The relationship between contrast and response did not show
graded changes with prior probability. For contrast discrimi-
nation, the slope of the relationship between contrast and
response is critical; the higher the slope, the larger the differ-
ence in response evoked for the same change in contrast, which
would be expected to result in greater discriminability of
contrast (Boynton et al. 1999; Foley and Legge 1981; Legge
and Foley 1980; Morrone et al. 2002; Nachmias and Sansbury
1974; Pestilli et al. 2011; Zenger-Landolt and Heeger 2003).
Systematic changes in the slope of contrast response then could
potentially account for graded behavioral performance with
prior probability. To quantify the degree of sensitivity to
grating contrast, we defined contrast sensitivity as the slope of
the contrast-response function plotted on a linear (or semi-log)
axis and compared it across the different prior probability
conditions. BOLD responses increased with contrast for all
visual areas (Fig. 3A, slopes of contrast-response functions;
P & 0.01 in V1 and hV4, P & 0.02 in V2 and V3, P $ 0.06
in V3A, Student’s t-test for contrast sensitivity #0), thus
giving positive values to contrast sensitivity as expected from
the monotonically increasing relationship between contrast and
response (Albrecht and Hamilton 1982; Boynton et al. 1999;
Gardner et al. 2005; Logothetis et al. 2001; Sclar et al. 1990;
Tolhurst et al. 1981; Tootell et al. 1995). Contrast sensitivities
did not show significant differences with prior probability in all
visual areas, regardless of whether the slope was calculated on
a linear or semi-log axis (P ( 0.25 for main effect of prior
probability on slopes of cued and uncued responses calculated
on both linear and semi-log axes, 2-way ANOVA over prior
probability and subjects). These results agree with earlier
reports finding no difference in BOLD-measured contrast sen-
sitivity in early visual areas with attention (Buracas and Boy-
nton 2007; Li et al. 2008; Murray 2008; Pestilli et al. 2011) and
extend them to a range of spatial prior probabilities. Thus
graded behavioral performance was not due to graded changes
in contrast sensitivity.

The above-reported features of contrast response as a func-
tion of prior probability were robust to the criteria by which we
selected voxels for inclusion in the analysis. As reported in
MATERIALS AND METHODS. Retinotopy and localizer, we defined
the response to each target in each visual area using data from
a localizer scan using a fairly strict cutoff (coherence $ 0.5 for
V1-hV4 and 0.3 for V3A). If we made the cutoff stricter
(coherence $ 0.7), only areas V1-V3 had voxels that passed
the cutoff. These responses still increased with contrast, albeit
with marginal significance in V2 and V3 (P & 0.01 in V1, P )
0.085 in V2–3 for the linear scale and P & 0.01 in V1, P )
0.13 in V2–3 for the semi-log scale, Student’s t-test for contrast
sensitivity #0). Contrast sensitivity did not vary significantly
with prior probability (P ( 0.34 in V1, P ( 0.15 in V2, and
P # 0.09 in V3 for main effect of prior probability on slopes
of cued and uncued responses calculated on both linear and
semi-log axes, 2-way ANOVA over prior probability and
subjects). Reducing prior probability from 100 to 50% did not
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significantly change response magnitude at cued (0.28 vs. 0.32,
0.12 vs. 0.18, and 0.12 vs. 0.16% signal change, averaged
across pedestal contrasts, with P $ 0.1, 0.28, and 0.34 for
V1–3, respectively, uncorrected for multiple comparisons,
paired t-test over subjects) or uncued locations (0.15 vs. 0.16,
(0.02 vs. (0.10, and (0.07 vs. (0.09% signal change with
P $ 0.62, 0.053, and 0.6 for V1–3, respectively, paired t-test;
see above). Similarly, if we made the cutoff less strict (coher-
ence $ 0.3), responses in V1–4 still increased with contrast
(all P & 0.04, Student’s t-test; see above), but contrast sensi-
tivity did not vary significantly with prior probability (all P (
0.19 for main effect of prior probability, 2-way ANOVA; see
above), and response magnitudes did not vary significantly
between the 100 and 50% prior probability conditions at cued
(0.18 vs. 0.21% signal change with P $ 0.094 for V1, and 0.04
vs. 0.05, 0.15 vs. 0.13, and 0.58 vs. 0.59% signal change with
all P ( 0.6 in V2–4, respectively, paired t-test; see above) or
uncued locations ((0.08 vs. (0.13 and 0.01 vs. (0.04%
signal change with P $ 0.051 and 0.10 in V2 and V3,
respectively, and 0.13 vs. 0.11 and 0.46 vs. 0.48% signal
change with all P ( 0.49 in V1 and hV4, respectively, paired
t-test; see above). Thus changing the voxel selection criteria
did not change the main finding that early visual areas dis-
played contrast-sensitive responses that did not significantly
track prior probability in either sensitivity (slope of contrast
response) or magnitude at cued and uncued locations.

Subjects could use prior probability to improve response
preparation time; at higher prior probabilities, there is less
uncertainty as to which target they should respond about before
the response postcue is presented at the end of the trial, and
they could therefore respond more quickly. Correspondingly,
we found reaction times were on average shorter for the 100
compared with 50% prior probability condition (difference of
215.6 ms, P & 0.05, t-test over subjects) and likewise for the
50 compared with 25% prior probability condition (difference
of 71.65 ms, P & 0.05). Although these results support the
behavioral result that subjects’ behavioral performance tracks
prior probability, it also raises a potential confound in our
measured responses: subjects may stop attending to stimuli
earlier (Kiani et al. 2008) with higher prior probability such
that estimated responses for higher probability conditions may
be artificially low.

To investigate the effect of such a confound on our mea-
surements, we corrected for the potential decrease in response
magnitude resulting from a reduction in attended duration with
increasing prior probabilities. For the correction, we first com-
puted cue selectivity, the difference in response between cued
targets and uncued nontargets, and then scaled cue selectivity
according to the estimated reduction in attended duration
relative to the longest estimated attended duration for each
subject. That is, we assumed that the 25% prior probability
condition had the longest attended duration and that the other
prior probability conditions had lower attended durations. Thus
the ratio of the 25% prior probability reaction times to the 50
and 100% prior probability reaction times (calculated on a
subject-by-subject basis) was used as a scaling factor to in-
crease the cue selectivity magnitude for the 50 and 100% prior
probability conditions. The resulting scaled cue selectivity was
added back to the 50 and 100% prior probability uncued
measured response magnitudes, and those values were used as
the corrected cued responses. The resulting corrected response

magnitude was thus the predicted response magnitude had the
subject attended for similar durations of times for all prior
probability conditions. Even with this correction, responses to
cued and uncued locations were qualitatively similar. Response
magnitudes were similar for the 100 and 50% prior probability
conditions for cued (0.30 vs. 0.29, 0.15 vs. 0.14, 0.24 vs. 0.17,
0.66 vs. 0.64, and 0.36 vs. 0.33% signal change with P $ 0.70,
0.80, 0.12, 0.71, and 0.49 in V1-hV4 and V3A, respectively,
uncorrected for multiple comparisons, paired t-test over sub-
jects) and uncued locations (0.16 vs. 0.13, (0.05 vs. (0.10,
(0.01 vs. (0.05, 0.45 vs. 0.47, and 0.16 vs. 0.21% signal
change with P $ 0.27, 0.06, 0.20, 0.57, and 0.06 in V1–4 and
V3A, respectively, paired t-test; see above). On a subject-by-
subject basis, only 12% of subject visual areas (3 of 25) had
significantly larger responses for the 100 than 50% prior
probability condition in the cued location, and only 32% of
subject visual areas (8 of 25) showed significantly different
responses for the uncued locations, but six of these showed,
counterintuitively, less suppression for uncued locations as
prior probability increased. As for cue sensitivity, the differ-
ence in response between cued and uncued locations did not
differ significantly from 100 to 50% prior probability condi-
tions (P $ 0.45, 0.26, 0.43, 0.52, and 0.14 in V1–4 and V3A,
respectively, paired t-test). On a subject-by subject basis, only
20% of subject visual areas (5 of 25) showed differences in cue
sensitivity with prior probability, with three paradoxically
showing greater cue sensitivity as prior probability was re-
duced. Thus, even if we accounted for the potential increase in
underestimation of response magnitude with increasing prior
probability, cortical responses still did not track changes in
prior probability.

Efficient-selection model. Having found that BOLD re-
sponses did not strictly scale with prior probability in magni-
tude, cue sensitivity, or contrast sensitivity, we asked whether
“efficient selection” (Pestilli et al. 2011) could account for
graded behavioral performance that scaled with prior proba-
bility. Our model of efficient selection conceptualizes the
neural process underlying contrast discrimination using a sig-
nal-detection (Green and Swets 1966) framework in which
sensory signals for the four different grating stimuli are
weighted by their magnitude and then pooled together so that
perceptual decisions are made using pooled response distribu-
tions. Our model assesses how contrast-discrimination perfor-
mance can improve due to enhancements in sensory represen-
tations, for example, by response enhancement (improvements
in contrast sensitivity) and noise reduction, as well as changes
in the efficiency with which relevant sensory signals for per-
ceptual processing are selected.

How changes in sensory representation affect behavioral
performance can be appreciated by examining how response
magnitude and variability are estimated for the model. The
model starts by estimating the response magnitude to each of
the four stimuli (Fig. 4A) from a parameterized version (linear,
with slope and intercept parameters) of the measured contrast-
response functions (Fig. 4B). For each stimulus, the appropri-
ately matching contrast-response function is used to estimate
the response magnitude; for the example in Fig. 4, response
magnitudes for the two cued locations (top) are estimated
based on the contrast-response function for the 50% prior
probability cued condition (solid blue lines), and the two
uncued locations (bottom) are estimated from the contrast
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responses for the 50% prior probability uncued condition
(dashed blue lines). Because cortical responses increase with
contrast, the interval with the higher contrast can be discrim-
inated as the one that evoked the larger response (Fig. 4B, red
horizontal arrow is higher in response magnitude than the black
horizontal arrow). Better performance can be achieved through
increased contrast sensitivity, i.e., increasing the slope of the
contrast-response function, which increases the difference in
magnitude of responses to different contrasts. However, since
our analysis of the contrast-response functions measured in the
present study and previous published results (Buracas and
Boynton 2007; Murray 2008; Pestilli et al. 2011) did not find
any systematic difference in contrast sensitivity between cue-
ing conditions, we fit a single slope to all contrast-response
functions and only allowed the response offset (intercept) to
change between conditions. Next, the response variability at
each location was fit with a model parameter (') which could
be different for cued and uncued locations, thus giving rise to
response distributions of varying widths for each of the four
stimuli (Fig. 4C). Noise reduction as has been reported in
monkey physiology experiments can be achieved by decreased
correlation between neurons for cued as opposed to uncued
targets (Cohen and Maunsell 2009; Mitchell et al. 2009), which
results in smaller response variability for cued locations when
neural responses are averaged across populations [Fig. 4C, note
the difference in width of example response distributions for
the cued locations (top) as opposed to the uncued locations
(bottom)].

How efficient selection can affect model behavioral perfor-
mance can be appreciated by examining how the model pools
sensory responses. Sensory response distributions (Fig. 4C)
were pooled according to a rule (Eq. 2) whose parameter k
determined whether they were simply averaged together (k $
1) or weighted according to the magnitude of response (k # 1).
When k # 1, very large responses will pass through the pooling
rule, whereas smaller responses will be suppressed. The larger
the value of k, the closer the rule approximates max pooling, in
which the largest response is the only response that passes
through the pooling rule. Because cued locations evoke larger
responses, k # 1 allows for cued responses to pass but

suppresses the task-irrelevant, uncued responses, allowing ef-
ficient selection to improve discrimination performance. Note
that this behavior does not require the pooling rule itself
(setting of k) to change between cue conditions and is instead
based on the measured relative difference in magnitude of
evoked responses across locations under different cue condi-
tions: if responses have similar magnitudes (for example, when
all 4 locations are cued), they will be averaged together even if
k # 1, and if responses have larger differences across locations
(for example, when a single location is cued), the largest
response will have a higher weighting. Behavioral performance
of the model (d=) can be estimated from the pooled distribu-
tions (Fig. 4D) by computing the difference in the mean of the
two distributions divided by the standard deviation.

We fit the model simultaneously to the measured cortical
contrast-response functions and measured behavioral contrast-
discrimination data and found that efficient selection could
quantitatively account for improved behavioral performance
with increasing prior probability of spatial cues. This version
of the model tested the effects of efficient selection by allowing
k to be fit to the data while not allowing for any noise reduction
by forcing ' to be the same value for both cued and uncued
locations (i.e., 'cued $ 'uncued). This model fit well both the
measured contrast-response functions (Fig. 5A, r2 $ 0.77) and
behavioral performance (Fig. 5B, r2 $ 0.86) for V1. Fits were
equally good for contrast-response function data from the other
visual areas (contrast-response r2 $ 0.79, 0.85, 0.82, and 0.90,
and contrast-discrimination r2 $ 0.85, 0.86, 0.87, and 0.88 for
V2–4 and V3A, respectively). Of particular note, the efficient-
selection model could account for three main features of the
behavioral data (Fig. 5B): 1) the difference in behavioral
performance between the 100, 50, and 25% prior probability
conditions (vertical offsets of the dark, medium, and light blue
lines), 2) the improvement in performance as a function of
pedestal contrast (downward slopes of contrast-discrimination
functions), and 3) the decreasing effect of pedestal contrast on
discrimination threshold as a function of cue condition [i.e., the
downward slope of contrast-discrimination functions is most
evident in the 25% prior probability condition (light blue line)
and least evident in the 100% prior probability condition (dark
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Fig. 4. Schematic diagram of the efficient-selection model. The response magnitude evoked by each contrast grating in the stimulus (A) is estimated from an
interpolated contrast-response function measured with BOLD imaging (B). Note that the response magnitude for the 2 top cued locations are estimated from the
contrast-response functions for cued locations (solid blue lines) and the 2 bottom uncued locations from the contrast-response functions for uncued locations
(dashed blue lines) in the 50% prior probability condition. Only 1 of the locations (target, top right in this example) has a difference in contrast between the first
(red) and second (black) intervals; for the rest of the locations, the response for the second (black) interval overlaps completely with the first (red, not visible
due to overlap) interval. These response magnitudes are transformed into Gaussian response distributions (C) using the standard deviation (') parameter(s) of
the model. In this example, the 2 top cued locations have a smaller ' then the lower uncued locations ('cued & 'uncued). Again, note that the response distribution
of the second (black) interval completely overlaps with the first (red, not visible) interval at nontarget locations. The 4 sets of response distributions are combined
according to the pooling rule (Eq. 2) with parameter k. Discriminability is determined from the pooled distributions (D). Model parameters are indicated above
each arrow in the diagram.
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blue line)]. The model’s ability to fit the effect of pedestal
contrast on the contrast-discrimination threshold (see 2 and 3
above) was due to the decreased effect of distractors when the
target had a high pedestal contrast (in a given trial, each
distractor had a pseudorandomized contrast of 12.5, 25, or 50%
contrast and thus competed less with the target pedestal con-
trast when the target had high contrast than when it had low
contrast; see Fig. 9 of Pestilli et al. 2011). These fits were
achieved with k values that weighted larger responses more in
the pooled response (k $ 5.64, 4.65, 4.92, 4.97, and 4.81 for
V1–4 and V3A, respectively). The noise variability (' $
0.023, 0.033, 0.030, 0.026, and 0.017 for V1–4 and V3A,
respectively) was similar to those estimated in previous exper-
iments (Pestilli et al. 2011). Although the model was best fit
when the complete set of behavioral data was used (Fig. 2C),
a qualitatively similar set of results was obtained if we used
simultaneously collected behavioral data (Fig. 2A), albeit with
lower variance of the contrast-discrimination data accounted
for (r2 $ 0.77, 0.46, 0.84, 0.78, and 0.80 for V1–4 and V3A,
respectively).

Previous results (Pestilli et al. 2011) have shown that a
realistic amount of noise reduction could not account for
behavioral enhancement; in the present study we extend that
finding to show that noise reduction cannot account for
changes in prior probability at all without assuming some form
of efficient selection. The intuition is based on consideration of
how reduction of variability at cued locations (Cohen and
Maunsell 2009; Mitchell et al. 2009) would affect pooled
responses. For the 100% prior probability condition, a single
location is cued (Fig. 6A, left; top right location is cued),
resulting in reduced variability at that location (distributions
are narrower). Pooling without efficient selection would lead to
pooled responses with substantial variability from uncued
locations (Fig. 6A, right; pooled distributions are wide). Para-
doxically, cueing all four locations in the 25% prior probability
condition would (Cohen and Maunsell 2009; if we simply
extrapolate from findings that did not explicitly test such a
condition, Mitchell et al. 2009) result in reduced variability at
all locations (Fig. 6B, left) and, after pooling without efficient
selection, reduced variability in the pooled responses (Fig. 6B,
right). This reduced variability in the pooled responses would
be expected to give better, not worse, performance as prior
probability is reduced, contrary to what we found behaviorally.
Therefore, if we try to fit the behavioral data without efficient
selection, assuming noise reduction of about 50% for cued

locations (2'cued $ 'uncued) to simulate results from the mon-
key physiology literature (Cohen and Maunsell 2009; Zohary
et al. 1994), the model predicts the opposite of what we found
behaviorally: improvements in behavioral performance (reduc-
tion in discrimination thresholds, Fig. 6C) with decreasing
prior probability.

The efficient-selection model fits for the current data showed
smaller exponents (k $ 5.64 in V1; see above) compared with
data from our previous study (k $ 68.08; Pestilli et al. 2011),
suggesting somewhat less efficient pooling and correspond-
ingly poorer behavioral performance in the current data set. We
next explored how significant this difference from the previous
report was by asking how large a change in predicted behav-
ioral performance would be expected for such changes in
exponent magnitude. We used the efficient-selection model ('
constrained to be the same for cued and uncued locations) and
systematically changed k and examined predicted contrast-
discrimination thresholds. We found that as k increased from 1,
there was a rapid increase in behavioral enhancement with
cueing (Fig. 7). The threshold ratio between the 25 and 100%
prior probability conditions (Fig. 7, light blue line), which
measures how many times better performance is with 100
compared with 25% prior probability conditions, increased
rapidly and saturated. The ratio between the 50 and 100% prior
probability conditions showed a similar behavior and saturated
at a lower ratio (Fig. 7, blue line). The dependence on k was
similar for both the 25 and 50% prior probability threshold
ratios, as can be seen in the inset, which displays the ratios
normalized by their maximum value. Thus the values of k
obtained in the current experiment results in better perfor-
mance with prior probability, but higher values of k which fit
previous experiments suggest that subjects in the previous
experiment were performing modestly better, near-optimally
given the model.

Efficient-selection model predictions for distractor effects. If
a distractor is of high contrast, it will evoke a large response at
a task-irrelevant location, and a prediction of the efficient-
selection model is that it will substantially disrupt behavioral
performance. Whereas this prediction was explicitly tested and
validated in a previous work (Pestilli et al. 2011), we have
extended those predictions to all of the prior probability con-
ditions tested in the present work. In particular, as prior
probability decreases, fewer locations will have large re-
sponses due to cueing, and so performance should be more
disrupted by the presence of a high-contrast distractor. We

25% prior cued50% prior cued
50% prior uncued100% prior uncued

100% prior cued

12.5 25 50

−0.1

0

0.4 

B
O

LD
 m

ag
ni

tu
de

(%
 s

ig
na

l c
ha

ng
e)

12.5 25 50
Pedestal contrast (% contrast)

12.5 25 50 12.5 25 50

25

0

12.5 50 
−0.1

0.4 

12.5 50 
−0.1

0.4 

12.5 50 
−0.1

0.4 

D
is

cr
im

in
at

io
n 

th
re

sh
ol

ds
(%

 c
on

tr
as

t)

A Contrast-response functions B Contrast-discrimination
functions

12.5 50
3

10
30

25% prior
50% prior
100% prior

Fig. 5. Efficient selection provides good fits
of cortical activity and behavioral perfor-
mance. A: contrast-response functions are
plotted on a semi-log axis in main panels and
on a linear axis in insets. Solid and dashed
lines are fit from the efficient-selection
model, whereas data points are measured
BOLD responses. B: main panel shows mea-
sured discrimination thresholds (data points)
and model fits (solid lines) for efficient se-
lection on a semi-log axis, and inset displays
the same set of contrast-discrimination func-
tions on a log-log axis.

2843GRADED CHANGES IN SPATIAL PRIOR SPECIFICITY

J Neurophysiol • doi:10.1152/jn.00729.2013 • www.jn.org

on D
ecem

ber 2, 2014
D

ow
nloaded from

 



tested for this effect by examining contrast-discrimination
thresholds for the targets with a mid-level contrast (25%) when
there was a distractor with higher contrast (50%) or when there
was no distractor with higher contrast; these conditions oc-
curred randomly within the experiment. Computing discrimi-
nation thresholds separately for when there was a high-contrast
distractor or not, we found that for all prior probabilities,
discrimination thresholds were worse with a high-contrast
distractor, which matches predictions by our model of efficient
selection (average difference in discrimination thresholds
across subjects: (1.5, (6.4, and (10.8% contrast for 100, 50,
and 25% prior probability conditions, P & 0.05, paired t-test).

DISCUSSION

Using a contrast-discrimination task with multiple possible
target locations, we have shown that parametrically increasing
the spatial specificity of prior cues, and thereby the prior

probability that a given location will contain the discrimination
target, resulted in graded improvements in behavioral perfor-
mance. However, BOLD magnitude was not strictly graded
with prior probability (c.f. Basso and Wurtz 1997; Dorris and
Munoz 1998). Whereas responses were weakest when all
locations were cued, cueing one or two locations, and thus
changing the prior probability from 100 to 50%, did not result
in any significant change in cortical response or cue sensitivity
(difference in cortical response between cued and uncued
locations). Moreover, contrast sensitivity was also not graded
with prior probability, suggesting that graded performance
improvements were not due to improved sensory representa-
tion that would be expected by changing the slope of the
relationship between contrast and response (response enhance-
ment) (Boynton et al. 1999; Foley and Legge 1981; Legge and
Foley 1980; Nachmias and Sansbury 1974; Pestilli et al. 2011;
Zenger-Landolt and Heeger 2003). Instead, we found that a
model which links cortical responses to behavioral perfor-
mance (Pestilli et al. 2011) could quantitatively account for
graded performance enhancement by an efficient-selection
mechanism in which the magnitude of sensory responses
weighs how sensory evidence from different locations are
pooled together to form perceptual decisions.

Versatile allocation of spatial attention. Our results support
the notion that the human ability to allocate spatial attention
according to the relevance of locations is versatile. Behavior in
our task was consistent with both a single attentional focus
(Posner et al. 1980) that can be adjusted like a zoom lens
(Eriksen and St James 1986) and split, multiple attentional foci
(Awh and Pashler 2000; Castiello and Umiltá 1992). Splitting
attention has been demonstrated with the use of physiological
measurements (McMains and Somers 2004; Morawetz et al.
2007; Müller et al. 2003a) and has been suggested to incur little
processing overhead (McMains and Somers 2005). Splitting of
attention is advantageous when there are intervening stimuli
between locations of relevance, which was not the case for our
task. Other models of attention suggest that subjects may
switch attention from one location to another (Sperling and
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Melchner 1978). This model is unlikely, since it predicts that
the average attentional modulation when attending to two
locations would be roughly half of that found when attending
to a single location, in contradiction to our results. According
to the normalization model of attention (Reynolds and Heeger
2009), versatility of spatial attention allocation can account for
various different types of modulations of contrast response for
single units (Lee and Maunsell 2010; Martínez-Trujillo and
Treue 2002; Pooresmaeili et al. 2010; Reynolds et al. 2000;
Thiele et al. 2009; Williford and Maunsell 2006), which when
averaged across large populations, as BOLD measurements
implicitly do, may appear as additive offsets (Hara et al. 2014)
as measured in the present study.

Sensory enhancement or efficient selection. In our analysis,
efficient selection rather than sensory enhancement accounted
for graded behavioral performance with prior probability, but
this does not imply that attention always acts primarily through
improved selection, gating (Fischer and Whitney 2012), or
synaptic transmission (Briggs et al. 2013) of sensory signals.
We did not find any evidence for sensory enhancement in the
form of improved contrast sensitivity (i.e., increased slope of
contrast-response), nor did modeled noise reduction without
selection improve behavioral performance, so instead we con-
cluded that efficient selection plays a dominant role in gradu-
ally enhancing behavioral performance with prior probability.
Efficient selection may be particularly important when a visual
scene is cluttered (c.f. Ciaramitaro et al. 2001; Pestilli and
Carrasco 2005); tasks which involve multiple targets like ours
are more likely to benefit from improved selection than tasks
which involve only one or two targets. Moreover, the particular
task performed may influence whether sensory enhancement or
efficient selection plays a dominant role. In orientation dis-
crimination, for example, neurons whose orientation tuning
provides the most amount of information relevant to discrim-
ination may already be more strongly weighted than others
(Jazayeri and Movshon 2007; Purushothaman and Bradley
2005; Scolari and Serences 2009, 2010; Scolari et al. 2012;
Seung and Sompolinsky 1993; Verghese et al. 2012) so that
additional selection through attentional selection may be less
effective. Indeed, sensory enhancement in the form of sharp-
ened orientation tuning has been reported for orientation dis-
crimination when prior information is provided in humans
(Anderson et al. 2013; Jehee et al. 2011; Kok et al. 2012),
though not in monkeys (McAdams and Maunsell 1999). Con-
trast discrimination may benefit more from summation across
many neurons all with monotonically increasing contrast re-
sponses (Verghese et al. 2012), and therefore behavioral per-
formance may tend to be initially based on a less selective
sampling of neurons. Efficient selection then, particularly in
the presence of multiple possible targets, may be a more
critical neural mechanism for improving behavioral perfor-
mance.

Hemodynamic coupling to neural activity. The exact link
between neural and hemodynamic activity is an area of active
research (Logothetis 2008), leading to uncertainty in the inter-
pretation of BOLD activity with attention (for a discussion
relevant to the tasks studied here, see Pestilli et al. 2011). In
some cases hemodynamic activity appears better correlated
with perception than spiking activity (Boynton 2011; Maier et
al. 2008). Hemodynamic activity without corresponding spik-
ing activity has been reported (Sirotin and Das 2009), raising

the possibility that attentional modulations of hemodynamic
response are unrelated to changes in neural activity. However,
combined blood flow and oxygenation measurements suggest
that attention in humans incurs a substantially increased cere-
bral metabolic rate of oxygen consumption (Moradi et al.
2012). Thus BOLD responses may be sensitive to small
changes in neural activity with attention summed across many
neurons (Luck et al. 1997). Importantly, voltage-sensitive dye
(VSD) measurements of monkey V1 during a comparable task
to ours found attentional modulations that were indistinguish-
able whether one or four locations were being cued (Chen and
Seidemann 2012), thus supporting a similar conclusion to ours
about the importance of gating or efficient selection rather than
sensory enhancement. Thus VSD measurements and other
evidence support our conclusion that neural responses are not
scaled with prior probability and suggest that considerations of
spatial scale of measurements, rather than differences related to
the origin of BOLD signals, can explain some apparent dis-
crepancies between single-unit and BOLD measurements
(Boynton 2011). Nonetheless, there are caveats. VSD measure-
ments do not distinguish excitatory and inhibitory responses,
which could lead to discrepancies between gross VSD mea-
surements and the responses due to excitatory population
activity if the typical balance (Haider et al. 2006; Isaacson and
Scanziani 2011; Mariño et al. 2005; Shadlen and Newsome
1998) between excitatory and inhibitory signals is altered by
attention state (Haider et al. 2012; Zhou et al. 2014). Moreover,
attention states may recruit neuromodulatory signals (Yu and
Dayan 2005) that could change the relationship between
BOLD and spiking activity in ways that are not yet known.

The efficient-selection model was built on the assumption of
a linear relationship between BOLD responses and neural
firing, i.e., that increases in spiking with stimulus contrast is
associated with a proportional change in the BOLD response.
Experiments which have directly examined hemodynamic
measures compared with neural firing rates as a function of
stimulus contrast have predominantly supported this linear
assumption. Direct comparison of multi-unit and local field
potential (LFP) measures with concurrently measured BOLD
responses for contrast response shows a relationship that is
approximately linear with a non-zero intercept (Fig. 5 of
Logothetis et al. 2001), and comparison of BOLD responses
and measured single-unit contrast response across species
shows strong linear agreement (Heeger et al. 2000). Concurrent
measurement of optical imaging with intrinsic signals and
measurements of spiking of individual neurons have shown
that after removal of a nonspecific signal (Sirotin and Das
2009) by subtraction, the relationship between hemodynamic
response and spiking response is linear (Fig. 3C of Cardoso et
al. 2012). The subtraction procedure applied to our data did not
substantially change our results.

Nonetheless, there is a diversity of experimental evidence
regarding the relationship of hemodynamic to electrophysio-
logical responses; as long as the relationship is linear or
compressive, the conclusions of our modeling would not qual-
itatively change. That is, a compressive relationship suggests
that at high baseline BOLD activity, differences in BOLD
responses would signal smaller differences in electrophysio-
logical signals than at low baseline BOLD activity. Because we
have found that at high prior probability, cued targets have a
higher baseline BOLD activity, this would suggest that the
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measured differences in response for different contrasts would
correspond to smaller, less discriminable differences in elec-
trophysiological activity. This contradicts a sensory enhance-
ment account in which attention acts to improve the discrim-
inability of sensory signals. Compressive (or, equivalently,
expansive if reported as the dependence of hemodynamic
activity on electrophysiological activity) (Devor et al. 2003; Li
and Freeman 2007; Offenhauser et al. 2005; Sheth et al. 2004),
linear (Arthurs et al. 2000; Ogawa et al. 2000; Ngai et al. 1999;
Smith et al. 2002). and threshold-linear relationships (Logo-
thetis et al. 2001; Nemoto et al. 2004; Schummers et al. 2008)
have been reported between optical measurements of hemody-
namic activity and electrophysiology in numerous experi-
ments. Moreover, the relationship between BOLD responses
and estimated metabolic rate of oxygen consumption has been
reported to be compressive (Liang et al. 2013), supporting
similar conclusions. Conversely, a sigmoidal (Norup Nielsen
and Lauritzen 2001) or inverse-sigmoidal relationship (Jones et
al. 2004) between hemodynamic and electrophysiological sig-
nals would be able to predict behavioral performance enhance-
ment without efficient selection for the range of hemodynamic
response levels in which the relationship is compressive. The
totality of the evidence therefore suggests a relationship be-
tween hemodynamic and spiking measures, which is compat-
ible with our conclusion that efficient selection can account for
graded changes in behavioral performance.

Limited resources. That behavioral improvements are
graded with spatial specificity of prior cues suggests that a
limited resource is being distributed to handle the processing of
cued stimuli. However, our data provide little support for this
limited resource being observable in early visual cortex activ-
ity. No significant difference in response between the 100 and
50% prior probability conditions was observed. There was a
small overall decrease in response for the 25% prior probability
condition when all four locations were cued (Müller et al.
2003b; c.f. McMains and Somers 2004). However, cueing all
items is a special case where attention is spread across the
whole visual field and experimentally prohibits evaluation of
the difference in response between cued and uncued stimuli.
Particularly for decision models that compare the responses for
multiple different stimuli as our efficient-selection model does,
the relative difference between response magnitudes for the
different stimuli is more important than the difference in
response magnitude relative to an arbitrary gray-screen
baseline.

If attentional modulation between cued and uncued locations
is not resource limited in early visual cortex, what does limit
performance? Noise reduction is a possibility. Electrophysio-
logical studies suggest that intrinsic variability and correlations
in neural firing decrease with attention in V4 (Cohen and
Maunsell 2009; Mitchell et al. 2009). This could account for
behavioral enhancement, particularly in tasks with few stimuli
where behavior is limited by the sensitivity of sensory re-
sponses rather than the exclusion of external noise (Dosher and
Lu 2000; Lu and Dosher 1998). However, our analysis showed
that as more locations were cued, noise reduction of responses
at different locations resulted in less noise after pooling, thus
predicting better perception as more locations are cued, oppo-
site to our observations. One explanation for decreased corre-
lation with attention is that shared variability comes from a
common source of inhibition which is suppressed at cued

locations (Cohen and Maunsell 2009). If this is the case, why
might neural circuits be constructed to inject shared variability
and thereby reduce sensitivity? Perhaps decreased correlation
is a side effect of inhibitory signals whose purpose is to control
the overall magnitude of responses, which, according to our
efficient-selection model, is what determines whether task-
relevant signals can be distinguished from task-irrelevant
signals.

Behavioral performance may also be limited by access to
higher cognitive resources such as working memory or percep-
tual processes. Our efficient-selection model leaves open the
question of what resource the selection process controls access
to. A simple possibility is that higher cortical areas receive
pooled sensory signals which have undergone efficient selec-
tion so that performance is limited by the degrading effects of
representing information from distractor locations as well as
task-relevant target locations. Another possibility is that work-
ing memory limits performance while efficient selection con-
trols which sensory responses are encoded in working memory
(Cowan et al. 2005; Uncapher and Rugg 2009; Vogel et al.
2005). We intentionally kept the working memory load low in
our task by limiting the number of discrete targets (Cowan
2001; Fukuda et al. 2010; Luck and Vogel 1997; Miller 1956)
and the duration of the interstimulus interval. Nonetheless,
access to working memory can affect task performance (Vogel
et al. 2005), and the role of efficient selection may be to ensure
that the correct visual stimuli are stored in working memory.

Our task shares several features of classical search para-
digms (Eckstein 2011) but differs in several respects. First,
there are a fixed number of stimuli, making interpretation
easier than examining increases in set size, which can covary
with stimulus density and increases in sensory interactions.
Second, the target location is specified at the end of the trial,
reducing uncertainty (Pelli 1985) about target location during
the response interval. Finally, our manipulation increased the
number of monitored locations, not the set size in which an
object must be searched. Nonetheless, conceptual views of the
processes that limit search performance may be relevant.

In particular, a statistical decision-making framework
(Palmer et al. 2000; Verghese 2001), in which performance
gets worse with increasing number of objects because noisy
distractor responses become more likely to exceed the decision
threshold for target presence, has been used to explain search
performance. Refinement of this view suggests that an optimal
Bayesian observer could improve performance by weighing the
sensory evidence from each possible object location according
to both the quality (Ma et al. 2011) and the prior probability
that the location contains the target (Eckstein 2011; Shaw
1984; Shaw and Shaw 1977). When applied to our task, this
suggests that observers should weight sensory evidence ac-
cording to the probability that each location contains the target,
the prior probability. Indeed, we see graded enhancements in
performance which roughly track prior probability. While our
BOLD measurements did not find a one-to-one correspondence
between response magnitude and prior probability, response
increases, when fed through the efficient-selection mechanism,
did predict the observed graded behavioral results. Thus our
results suggest that rather than explicitly encoding prior prob-
ability in early visual cortex, efficient selection, as imple-
mented by the weighting of sensory responses according to
their magnitude, can pool responses appropriately as long as
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each probable, task-relevant location induces similarly large
responses compared with task-irrelevant locations.
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