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Despite the fact that, to perform the task, the 
monkey must have some working memory of 
the direction of the dots, neurons in LIP showed 
near chance-level encoding of motion direction 
during the delay period. This lack of delay- 
period selectivity is not a result of information  
about motion direction not entering LIP;  
during stimulus presentation, the motion 
direction was clearly represented. The neurons 
just seem to forget the direction when it most 
matters. Notably, the nearby medial superior 
temporal area, MST, which also receives direction- 
selective information from the medial temporal 
motion selective area MT, has by contrast been 
shown to carry working memory representa-
tions of motion direction5.

Although clearly a provocative finding, task 
and training are intertwined in the experi-
ments as outlined above, making it unclear 
which accounts for the difference in LIP activ-
ity. Parietal working memory activity might 
arise only after sufficient training. Given that 
the delayed match-to-sample task was trained 
first, it is possible that lack of working memory 
representation comes not from a difference in 
task, but from a lack of training. The authors 
have provided a detailed view into their train-
ing structure, which helps to allay this concern. 
In particular, the monkeys were extensively 
trained on the delayed match-to-sample task 
(hundreds of daily sessions and hundreds of 
thousands of trials), and their performance 
had plateaued. Although sorting out training 
and task by design awaits future replication 
studies, clearly the monkeys had substantial 
experience with the delayed match-to-sample 
task, therefore suggesting that task, and not 
training, accounts for the difference.

Potential alternative explanations aside, 
pause for a second to consider the extensive 
training regime. Why does it take monkeys so 
long to learn so little? It seems intuitive that a 

But how exactly does one get a monkey to 
make categorical decisions repeatedly and in 
a controlled way so that the neural representa-
tions can be systematically studied?

Continuing in the tradition of their labora-
tory4, Sarma et al.3 have developed formidable  
skills in training monkeys to do just this.  
In the current work, they shaped behavior 
incrementally, starting with a sequence of sim-
pler tasks before making the leap into categori-
cal decisions. The authors trained monkeys to  
perform a delayed match-to-sample task in 
which the monkeys were required to remem-
ber the direction of a patch of briefly presented 
moving dots and release a lever only if the 
direction of a second dot patch, presented after 
a short delay, exactly matched the remembered 
direction. After monkeys reached criterion 
performance, they were trained on the full 
categorization task, which was identical except 
for one crucial difference. In the categorization 
task, the monkeys were trained to release the 
lever not when the two directions were iden-
tical but when they were in the same experi-
menter chosen category (that is, moved in the 
same direction relative to an arbitrary category 
boundary). A series of studies has provided 
abundant support that, after such categoriza-
tion training, neurons in LIP and prefrontal 
cortex show a beautifully simple and stable 
representation of the category, preferring 
stimuli in either one category or the other4.

The new insight concerning working mem-
ory came from a relatively simple proposition 
that led to an unexpected result: record the 
activity of neurons before as well as after the 
training of the categorization task. Given that, 
after training, LIP neurons encode category 
during the delay period, might one expect that 
a working memory representation encoding 
direction would be present for the delayed 
match-to-sample task? Oddly, the answer is no. 

and update our understanding of dopamine in 
action, motivation and learning.
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If you can imagine reading to the end of this 
sentence and forgetting what was written at 
the beginning, you may start to appreciate 
how critical working memory is to much of 
what we take to be higher cognition. Indeed, 
a life without such short-term memory would 
lurch between disconnected events, threat-
ening not just our cognitive abilities, but the 
core continuity of our conscious selves. The  
finding in the 1980s that, during delay periods 
in which monkeys remembered the location of 
an instructed eye movement, prefrontal1 and 
parietal2 neurons display persistent, spatially 
specific activity cemented the idea that these 
cortical areas are allied in serving this criti-
cal memory function. However, in this issue 
of Nature Neuroscience, Sarma et al.3 report 
parietal neurons in the lateral intraparietal 
area (LIP) to be unexpectedly and puzzlingly 
forgetful, whereas their counterparts in the 
prefrontal cortex are not.

This finding comes from experiments 
probing another hallmark cognitive function 
for which parietal and prefrontal neurons 
appear to share responsibility: categoriza-
tion. Categorization is our ability to general-
ize properties of, say, an apple across many 
exemplars with incidental differences in size, 
color or shape. Without categorization, each 
and every apple might have to be individu-
ally memorized. Categorization is clearly a  
foundational cognitive capacity; we use it 
not just when we recognize an apple, but 
when we distinguish specific states of impor-
tance, such as whether it is edible or rotten.  
We might imagine that categorical decisions 
are just as critical for a monkey as for a human.  
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human could learn both tasks extremely rap-
idly and attain perfect performance in a single 
leap once they understand the rule. If this dis-
tinction exists, what does that mean for extrap-
olating the results of these animal experiments 
to human cognition? Verbally explaining a rule 
gives a distinct advantage, but how easy is it 
actually to learn the match-to-sample and cat-
egory rules given that they are not explicitly 
instructed, but implicitly instructed through 
feedback? Out of curiosity, we tested our intu-
itions about human category learning by hav-
ing human participants on Mechanical Turk, 
an online platform that enables recruitment of 
subjects for scientific experiments, learn these 
two tasks implicitly. The details of the stimulus 
were kept as similar as possible to those used 
for the monkey experiments. We stress that 
these results have not been peer-reviewed and 
are provided here simply to stimulate thought 
and discussion. All data and experimental code 
are accessible from http://gru.stanford.edu/
doku.php/categorization/.

Counterintuitively, we found that human 
learning of categorization resembled monkey 
learning, whereas delayed match to sample 
performance suggested stark differences. Of 63 
subjects trained on the category task (without 
prior training on the match-to-sample task), 
only 5 (8%) successfully learned the rule and 
could verbalize it within 150 trials. Subjects 
in general showed incremental improvements. 
Although many demonstrated performance 
that was clearly above chance, they came away 
with various superstitions that did not match 
the actual category rule. In contradistinction, 
the delayed match-to-sample task was dead 
easy for humans. Performance after 75 trials 
was nearly perfect, and 42 of the 45 subjects 

(93%) could verbalize the rule exactly. Of 
course, there are differences in the amount 
of evidence each trial of these two tasks pro-
vides for potential rules, but the match to 
sample rule nonetheless appeared to be highly  
intuitive for human subjects.

These informal results suggest that humans 
are more like monkeys when learning the cat-
egorization task and differentiate themselves 
dramatically from monkeys in the delayed 
match-to-sample task. Indeed, after extensive 
training of the direction match-to-sample 
task, the monkeys persistently make large 
percentages of errors when directions are 
as different as 22.5°, whereas humans rarely 
made such errors after 75 trials (Fig. 1).  
The monkey behavior is puzzling, as mon-
keys are able to tell that even a few degrees of  
difference in motion direction are different (at 
least around vertical6) and 22.5° differences 
should be easily visually differentiable. It is 
perhaps unknowable what monkeys have con-
ceptualized about the tasks, but it suggests that 
the notion of sameness, so easy for humans 
to learn, is somehow much less natural for  
monkeys. One can only speculate about what 
could be different for the monkeys about 
matching a direction to sample such that this 
task would fail to result in stable working mem-
ory representations in LIP. Perhaps potential 
task strategy differences may also help to sort 
out the human literature, which has reported 
conflicting observations on whether stimulus- 
specific working memory representations  
are represented in parietal cortex7,8.

An intriguing possibility is that lability and 
flexibility in how monkeys perform the task 
is associated with dynamic rather than stable 
representations. A hint, in the results of Sarma 

et al.3, that this might be the case is that, in 
prefrontal cortex during the delayed match- 
to-sample task, working memory representations  
appear to not be completely stationary. That 
is, the representation of direction for neurons 
changes dynamically as a function of time, 
such that classifiers built at one time point are 
not as predictive of responses at other time 
points. If true, this suggests a potential link 
with views that cognitive functions are repre-
sented in dynamically changing activity9,10.

LIP has been something of a field of dreams 
for neuroscientists looking for the neural basis 
of various cognitive functions. A war of ideas 
broke out in the 1990s over whether this asso-
ciative area should be thought of in sensory or 
action terms; that is, whether we should use 
labels such as attention or intention. A field 
filled with different ideas grew up from this 
debate as it was discovered that responses in 
LIP are not just spatial, but are biased by factors 
reflecting many of the conceptual revolutions 
in systems neuroscience11. Different groups 
sought and found evidence for cognitive func-
tions in LIP, from value-based computations12, 
evidence accumulation in decision making13, 
categorization4, to perceptual learning14 and 
more. Perhaps all of these different representa-
tions are multiplexed10,15. However, the findings 
of Sarma et al.3 stand out not for what was found 
in LIP, but for what was not found. Though per-
haps different from the spatial representation 
that brought LIP to the forefront of systems 
neuroscience, it is nonetheless somehow ironic 
and perplexing that it is a working memory rep-
resentation that has gone missing.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Figure 1  Humans learn a delayed match-to-sample task much faster and more thoroughly than monkeys. (a) Sarma et al.3 found that LIP is distinguished 
from prefrontal cortex (PFC) in that, surprisingly, it does not show a working memory representation (left) for the direction of dots in a delayed match-
to-sample task (center). Humans whom we tested on Mechanical Turk (right) quickly and easily learned this task through feedback, even without being 
verbally told the rule. (b) A 22.5° difference in direction between sample and task would typically result in humans reporting “different,” whereas monkeys 
would typically report “the same” even after performance had plateaued after hundreds of days of training. Monkey data adapted from Sarma et al.3, 
Nature Publishing Group; error bars represent s.e.m. Human data are presented as mean and s.e.m. over 45 subjects.
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motor or cognitive processes. Next the authors 
considered the strength of each region pair’s 
connection and tested whether this varied 
across subjects in the same way that the atten-
tion score varied. They found that 1,000–2,000 
connections’ strengths varied across subjects 
in a way that correlated with subjects’ varia-
tions in attentional ability. These connection 
strengths were then averaged together within 
each subject, resulting in a single measure 
representing average connection strength, 
and this simplified measure of brain connec-
tivity was found to correlate very highly with  
sustained attention ability.

This result still held when the approach 
was applied to subjects not used in this pre-
diction-training process; such evaluations 
(for example, leave-one-out testing) are 
crucial in situations such as this, where the 
possibility of over-fitting the data is high. 
Even more convincingly, when this same set 
of brain connections was combined together 
using separate fMRI data with the subjects 
at rest, the connection strengths were still 
strongly predictive of the subjects’ separately 
measured attention ability. This tells us that 
this large set of brain connections is highly 
related to sustained attention ability as an 
innate property of the individuals’ brains, 
and not just during the explicit attention 
task. That is consistent with another recent 
study from the same authors, indicating that 
connectivities estimated during rest corre-
spond closely to those estimated during a 
range of tasks5. Finally, the authors con-
ducted a fully independent replication test, 
investigating whether averaging connection 
strength across this same set of putative 
attentional brain connections was predic-
tive of attentional problems in a cohort of 
Chinese children with ADHD. Again, they 
found highly significant predictions of 
attentional ability, in this case relating to a 

predict other cognitive measures, such as 
IQ. Furthermore, there is evidence that this 
extended network of connections is modulated 
en masse, with the network as a whole being 
weaker or stronger in subjects with different 
abilities to sustain attention.

To study this link between attention and 
connectivity, Rosenberg et al.2 used a recently 
developed protocol3,4 in which the subject 
watches a slowly varying slideshow of dif-
ferent scenes and is asked to respond when a  
particular scene type is shown. Over the course 
of the experiment, attention generally falls, and 
the average accuracy in correct reporting of 
scene types is found to be a sensitive indicator 
of sustained attention ability—one that corre-
lates with numbers of attention-related errors 
in normal life, as well as level of ‘mindfulness’ 
(for example, awareness of one’s present situ-
ation and thoughts). Notably, a person’s level 
of mindfulness also correlates positively with 
mean reaction time in this attentional task, 
with slower responses relating to being more 
generally thoughtful.

To test whether a subject’s attention score 
could be predicted by specific brain connec-
tions, Rosenberg et al.2 started by analyzing 
the functional magnetic resonance imaging 
(fMRI) data acquired during the attention 
task. They parcellated the brain into 268 
distinct functional regions and estimated a 
representative average activation time series 
for each region. Then they estimated the  
correlation between every pair of regions, gen-
erating data for ~36,000 region pairs (Fig. 1). 
Correlation is a simple measure of the func-
tional connectivity between regions, based on 
the notion that functionally linked regions will 
co-fluctuate. These temporal fluctuations may 
be caused by a region altering its behavior in 
distinct task conditions. Alternatively, in rest-
ing state experiments, fluctuations would be 
spontaneous changes in the states of sensory, 
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The possibility of using neuroimaging data 
to predict an individual’s behavior is of great 
interest because it may eventually lead to 
understanding how processing in the brain 
gives rise to cognition. Over recent decades, 
neuroimaging has been evolving from its  
original primary application of population-
average brain mapping toward understanding 
how brain function varies across subjects and 
how these differences relate to the subjects’  
differences in behavioral performance. 
Moreover, whereas early neuroimaging studies 
concentrated largely on localizing functional 
areas, it is now the connectivities between 
these areas that are increasingly being probed. 
Indeed, investigating the relationship between 
connectivity and cognition, and how this var-
ies across subjects, is a primary goal of major 
recent neuroimaging endeavors such as the 
Human Connectome Project1.

In a study in this issue of Nature 
Neuroscience, Rosenberg et al.2 investigated 
in depth one particular mind-brain relation-
ship: whether indicators of an individual’s  
ability to sustain attention can be found in brain 
connections. They found that the strengths of 
a specific set of brain connections can be used 
to predict a subject’s attention ability with 
high accuracy. This held not just for connec-
tivity estimates made from the attention task  
imaging data, but even when estimated from 
resting state data, collected when the sub-
jects were not carrying out any explicit task. 
Rosenberg et al.2 found that a large number 
of brain connections are involved in sustained 
attention and that, despite this being a highly 
extended network, the set of connections is 
specific to attention and does not successfully  
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