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Abstract

Orientation selectivity is one of the most conspicuous receptive-field (RF) properties that distinguishes neurons
in the striate cortex from those in the lateral geniculate nucleus (LGN). It has been suggested that orientation
selectivity arises from an elongated array of feedforward LGN inputs (Hubel & Wiesel, 1962). Others have argued
that cortical mechanisms underlie orientation selectivity (e.g. Sillito, 1975; Somers et al., 1995). However, isolation
of each mechanism is experimentally difficult and no single study has analyzed both processes simultaneously to
address their relative roles. An alternative approach, which we have employed in this study, is to examine the
relative contributions of linear and nonlinear mechanisms in sharpening orientation tuning. Since the input stage of
simple cells is remarkably linear, the nonlinear contribution can be attributed solely to cortical factors. Therefore, if
the nonlinear component is substantial compared to the linear contribution, it can be concluded that cortical factors
play a prominent role in sharpening orientation tuning. To obtain the linear contribution, we first measure RF
profiles of simple cells in the cat’s striate cortex using a binary m-sequence noise stimulus. Then, based on linear
spatial summation of the RF profile, we obtain a predicted orientation-tuning curve, which represents the linear
contribution. The nonlinear contribution is estimated as the difference between the predicted tuning curve and that
measured with drifting sinusoidal gratings. We find that measured tuning curves are generally more sharply tuned
for orientation than predicted curves, which indicates that the linear mechanism is not enough to account for the
sharpness of orientation-tuning. Therefore, cortical factors must play an important role in sharpening orientation
tuning of simple cells. We also examine the relationship of RF shape (subregion aspect ratio) and size (subregion
length and width) to orientation-tuning halfwidth. As expected, predicted tuning halfwidths are found to depend
strongly on both subregion length and subregion aspect ratio. However, we find that measured tuning halfwidths
show only a weak correlation with subregion aspect ratio, and no significant correlation with RF length and width.
These results suggest that cortical mechanisms not only serve to sharpen orientation tuning, but also serve to make
orientation tuning less dependent on the size and shape of the RF. This ensures that orientation is represented
equally well regardless of RF size and shape.
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Introduction

Receptive-field (RF) characteristics change dramatically between
the cat’s lateral geniculate nucleus (LGN) and visual cortex. Neu-
rons in the LGN exhibit concentric center-surround RFs and re-
spond to any stimulus orientation (Hubel & Wiesel, 1961). On the
other hand, simple cells in the striate cortex have RFs that consist
of elongated discrete regions of adjacent ON and OFF areas, and
are selective to stimulus orientation (Hubel & Wiesel, 1959, 1962).
The classical explanation of this change is a feedforward system in
which LGN cell RFs of identical polarity are aligned along a single
axis. This comprises the elongated simple cell RF and provides the

synaptic inputs that form the basis for the observed orientation
selectivity (Hubel & Wiesel, 1962).

Understanding the neural mechanisms responsible for the
orientation tuning is of fundamental importance, and a number of
studies have been designed to test the feedforward hypothesis. For
example, extracellular recordings of LGN afferents after pharmaco-
logical blockage of cortical cell activity (Chapman et al., 1991)
and a cross-correlation analysis of LGN and simple-cell spikes
(Reid & Alonso, 1995) have lent support to the suggestion that
LGN cell RFs are aligned along the axis of cells’ preferred orien-
tation. Inactivating the cortical network by cooling does not effec-
tively disrupt the orientation selectivity of synaptic potentials (Ferster
et al., 1996), which is consistent with a feedforward excitatory
model of orientation selectivity.

However, other studies suggest a prominent role for intra-
cortical mechanisms. For example, orientation selectivity is greatly
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reduced following iontophoretic application of the GABA antag-
onist bicuculline (Sillito, 1975; Tsumoto et al., 1979; Sillito et al.,
1980), and it has been suggested that cortical inhibition acts to
determine orientation selectivity by inhibiting responses to non-
optimal orientations (Sillito, 1975; Hata et al., 1988). However, the
inhibition was later found to be strongest at the optimal orientation
(Ferster, 1986; DeAngelis et al., 1992; Douglas et al., 1991). Fur-
thermore, intracellular blockage of GABA-A mediated inhibition
does not disrupt orientation selectivity (Nelson et al., 1994). It is
also possible to account for orientation selectivity by recurrent
cortical circuitry (Douglas et al., 1995; Somers et al., 1995). Som-
ers et al. (1995) have proposed a model in which a dominant
source of orientation-selective input comes from recurrent excita-
tion whereas excitatory feedforward LGN inputs are only weakly
tuned for orientation. The model also incorporates cortical inhibi-
tion which acts nonspecifically to orientation and serves to sharpen
the orientation tuning by raising the spiking threshold and creating
an iceberg effect.

Although these results are instructive, none of them has exam-
ined both feedforward and cortical mechanisms to address the
relative contributions of each. This is because isolation of each
mechanism is experimentally difficult. An alternative approach,
which is employed in our study, is to examine the relative contri-
butions oflinear andnonlinearmechanisms in sharpening orien-
tation tuning. This approach allows us to conclude that cortical
mechanisms play an important role in sharpening orientation tun-
ing if the contribution of nonlinear mechanisms is significant rel-
ative to that of linear mechanisms.

The basis of this inference is as follows. A common simple-
cell model consists of a linear filter followed by a static nonlin-
earity (e.g. Movshon et al., 1978; Tolhurst & Dean, 1987; Albrecht
& Geisler, 1991; Heeger, 1992b; DeAngelis et al., 1993; Anzai
et al., 1999b), and the static nonlinearity has been identified as
an expansive function (e.g. Emerson et al., 1989; Anzai et al.,
1999b). The linear filter represents the effect of both feedfor-
ward LGN inputs (e.g. Reid & Alonso, 1995; Jagadeesh et al.,
1997) and cortical mechanisms such as spatially opponent inhi-
bition (Ferster, 1988; see also Pollen & Ronner, 1982; Troyer
et al., 1998). On the other hand, the expansive nonlinearity of
simple cells is assumed to be solely the consequence of cortical
factors such as cellular properties involved in the spike-triggering
mechanism as well as nonlinear inputs from the cortical net-
work. Note that the effects of subcortical nonlinearities do not
appear to be manifested by cortical neurons since the input stage
of simple cells is remarkably linear (e.g. Jagadeesh et al., 1997).
Therefore, if nonlinear mechanisms make a significant contribu-
tion to the sharpness of orientation tuning compared to linear
mechanisms, then it can be concluded that cortical factors must
play an important role in sharpening orientation tuning.

We report here an examination of linear and nonlinear mech-
anisms in orientation tuning. To obtain the linear contribution, we
first measure RF profiles using a binary m-sequence noise stimu-
lus. Then, we obtain a predicted orientation-tuning curve based on
linear spatial summation of the RF profile. The predicted tuning
curve thus represents the linear contribution. We also measure a
detailed orientation-tuning curve using drifting sinusoidal gratings.
The difference between the predicted and measured tuning curves
provides an estimate of the nonlinear contribution. We quantify
this nonlinear contribution as an exponent of the expansive non-
linearity, and compare that with the linear contribution. Our results
indicate that linear mechanisms are not sufficient to account for the
sharpness of orientation tuning of most simple cells, suggesting a

significant contribution of nonlinear mechanisms. Therefore, cor-
tical mechanisms play a prominent role in sharpening orientation
tuning of simple cells.

Methods

Recording and physiology

Details of the surgical and physiological procedures are as de-
scribed elsewhere (Anzai et al., 1999a,b) Briefly, extracellular
recordings were made from simple cells in the striate cortex of
anesthetized and paralyzed adult cats. Recordings from well iso-
lated single units were made with the use of two tungsten-in-glass
electrodes (Levick, 1972). After a single unit was identified by the
waveform of its response, the RF extents, optimal orientation, and
spatial frequency were measured qualitatively using sinusoidal grat-
ings. Then, an orientation-tuning curve was measured as the first
harmonic responses to sinusoidal gratings in which the position,
size, and spatial frequency were set to the optimal for the cell and
the orientation was varied randomly to have one of seven or more
values spaced in 10–15-deg steps around the optimal value. The
gratings were drifted at a temporal frequency of 2 Hz, and two
possible directions of grating motion were tested for each orien-
tation (i.e. directions orthogonal to the orientation).

Two-dimensional (2D) spatio-temporal RFs were mapped with
white noise stimuli generated according to binary m-sequences
(Sutter, 1992).A roughly circular-shaped stimulus patch large enough
to cover the RF of the cell was used. The patch was divided into
128 equally sized squares. The luminance of each square was
modulated every 40 ms to be either 18 cd0m2 above or below the
mean luminance (20 cd0m2) of the cathode ray tube display. An
RF map is obtained by cross-correlation of the stimulus sequence
and the resulting spike train of the cell. The RF represents a spatio-
temporal structure that characterizes a linear approximation to the
transformation between the stimulus and response, and is a func-
tion of the position of the stimulus in visual space and time (the
cross-correlation delay). Cells are classified as simple based on RF
organization (Hubel & Wiesel, 1959) and the degree of first har-
monic modulation in their response to drifting sinusoidal gratings
(Skottun et al., 1991).

Data analysis

To obtain parameters of the orientation-tuning curve, we fit a Gauss-
ian to the tuning data using the Levenberg–Marquardt algorithm
(Press et al., 1988). The equation for the Gaussian is

r ~u! 5 Ae2~u2uopt!
202su

2
1 Aoff , (1)

wherer ~u! is the response amplitude at orientationu. Parameters
A and Aoff are the peak response amplitude and the amplitude
offset (usually near zero), respectively.uopt denotes the optimal
orientation (the center of the Gaussian), andsu is the standard
deviation of the Gaussian. Halfwidth of the orientation-tuning curves
is defined as half the width of the Gaussian at half the peak height
above the amplitude offset.

To obtain a predicted orientation-tuning curve from the spatio-
temporal RF measured by the white noise stimuli, we transformed
the RF into the frequency domain by applying Fourier analysis.
For each cell, the spatial profile of the RF (Fig. 1a) at the optimal
correlation delay (defined as the delay which produces the largest
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sum of squared responses and has a population average of 526
8.7s.d. ms) is chosen and the 2D discrete Fourier transform taken.
This yields a 2D amplitude spectrum (Fig. 1b), which is symmetric
about the origin. Then, we fit one-half of the spectrum with a 2D
Gaussian:

R~u,v! 5 Ae2@~u202su
2!1~v202sv

2!# 1 Aoff , (2)

where

u 5 ~x 2 x0!cos~f! 1 ~ y 2 y0!sin~f!,

v 5 2~x 2 x0!sin~f! 1 ~ y 2 y0!cos~f!.

A andAoff denote the amplitude and the amplitude offset, respec-
tively. su andsv are the standard deviations of the Gaussian along
the u andv axes (dashed lines in Fig. 1b), respectively. Theu–v
coordinate is obtained by shifting thex–y coordinate of the spec-
trum by ~x0, y0! and then rotating it around the origin through the
anglef, where~x0, y0! is the center coordinate of the Gaussian and
f is the rotation angle of the Gaussian.

A predicted orientation-tuning curve is obtained by sweeping
out a semicircle centered on the origin of thex–y coordinate with
radius~ fopt! equal to the spatial frequency of the sinusoidal grat-
ings which were used to measure the orientation-tuning curves (see
Fig. 1b). The value of each point on the semicircle represents a
predicted response amplitude of the cell to a sinusoidal grating of
an orientationu equal to the angle of the point. The predicted
tuning curve is then fit with a Gaussian [eqn. (1)] to obtain pa-
rameters of the Gaussian and estimate the halfwidth of the tuning
curve.

In addition, we estimated the aspect ratio of the RF subregion
and the number of subregions to examine their effects on the
sharpness of the orientation tuning. Aspect ratio of the RF sub-
region is defined in the space domain (Fig. 1a) as the extent of the
RF subregion along the direction of the RF orientation~sL! divided
by the extent along the orthogonal direction~sw!, that is,

Subregion Aspect Ratio5 sL 0sW. (3)

We estimated the subregion lengthsL as

sL 5 2#2sL , (4)

where

sL 5 10~psv!.

The subregion length~sL! corresponds to the length of the RF
envelope in the space domain at 37% (10e! of its maximum am-
plitude. The subregion widthsW is obtained as

sW 5 10~2fo!, (5)

where fo is the optimal spatial frequency of the cell, which is
defined by the distance between the center of the 2D Gaussian
~x0, y0! and the origin of thex–y coordinate system in Fig. 1b.*

The number of subregions in the RF is estimated as

Number of subregions5 2#2sW0sW (6)

where

sw 5 10~psu!.

The term 2#2sW corresponds to the width of the RF envelope in
the space domain~rw in Fig. 1a) at 37% (10e! of its maximum
amplitude.

Results

We have recorded from a total of 146 simple cells from 28 adult
cats. We restricted the analysis to 37 cells whose orientation-tuning
curves had been measured at close to the optimal spatial frequency
with a sufficient number of different orientations to constrain the
Gaussian fit. For the chosen cells, Gaussian curves provided ex-
cellent fits to the data points and the best-fitting parameters had
variance within 10% of the parameter values. Most cells responded
better to gratings drifting in one direction (preferred direction)
than to those drifting in the opposite direction (nonpreferred di-
rection). However, as reported previously (Campbell et al., 1968),
the halfwidth of the orientation-tuning curve measured for the
preferred direction was similar to and did not differ in any con-
sistent way from the halfwidth for the nonpreferred direction. We
therefore analyzed orientation-tuning curves for only one direc-
tion: either the preferred direction (33 cells including three non-
directional cells) or the nonpreferred direction (four cells) when
the tuning curve for the preferred direction was not constrained
well for the Gaussian fit.

As expected from previous studies (Jones & Palmer, 1987b),
we find that the peak orientation of the cell from both measured
and predicted tuning curves are well matched (linear regression
analysis:r 2 5 0.957, slope5 0.986,P , 0.01) but that the half-

*BecausesW and sL are estimated differently [eqns. (4) and (5)], our
subregion aspect ratio may be underestimated by a small constant factor.
However, this will not affect our results since this constant factor will serve
only to shift all of the points in the log–log graph of Fig. 4a to the right by
the same amount.

Fig. 1. (a) Space-domain representation of the RF of a simple cell. Solid
contours represent a bright-excitatory subregion and dotted lines represent
dark-excitatory subregions. The dashed line represents the extent of the
RF. sL and sw refer to the length and width of a subregion, respectively.
rw denotes the width of the RF. Subregion aspect ratio~sL0sw! is estimated
for each cell using RF parameters obtained in the frequency domain (see
text for a definition). (b) Frequency-domain representation of the RF of a
simple cell. See text for details of obtaining predicted orientation-tuning
curves.
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widths of these curves are not (cf. Volgushev et al., 1996). Fig. 2a
shows a scatter plot of measuredversuspredicted halfwidths of the
orientation-tuning curves for the population of cells examined.
Most of the data points fall below the diagonal line, indicating that
the measured tuning halfwidth is smaller than predicted. Histo-
grams of predicted (Fig. 2b, dark bars) and measured (Fig. 2c,
light bars) halfwidths are shown above and to the right of the
scatter plot, respectively. The measured halfwidths range from 9.0
to 28.7 deg, which are similar to values reported in other studies
(Campbell et al., 1968; Henry et al., 1974; Rose & Blakemore,
1974; Watkins & Berkley, 1974). The distribution has a mean of
15.8 deg. In contrast, the distribution for the predicted halfwidths
ranges from 9.3 to 59.8 deg and has a mean of 28.3 deg. The
difference between the means of the two distributions is statisti-
cally significant~t-test of unequal variances:P , 0.01). The dis-
tribution of the predicted halfwidths also has a larger standard
deviation (10.0 deg) than that (5.7 deg) of the measured halfwidths
(F-test:P , 0.01). These discrepancies between the measured and
the predicted tuning curves can be accounted for by the expansive
nonlinearity exhibited by simple cells.

As mentioned earlier, simple cells are modeled as a linear filter
followed by an expansive nonlinearity (e.g. Movshon et al., 1978;
Tolhurst & Dean, 1987; Albrecht & Geisler, 1991; Heeger, 1992b;
DeAngelis et al., 1993; Anzai et al., 1999b). An expansive function
such as half-squaring (Heeger, 1992b), when applied to broadly
tuned input, will sharpen the output tuning of the cell by accen-
tuating the difference between large and small inputs to the cell.

For each cell, we estimated the magnitude of the exponent needed
to match the predicted orientation-tuning curve with the measured
tuning curve. The exponent is given by the ratio of the variances of
the Gaussian fits to the two orientation-tuning curves.

A population distribution of the exponents is shown in Fig. 3a.
To accurately predict the orientation-tuning curve a wide range of
exponents from 0.57 to 14.96 (geometric mean 3.15) is required.
For cells with an exponent near 1, the linear mechanism is suffi-
cient to explain the sharpness of the orientation tuning. Therefore,
the elongated pattern of feedforward LGN inputs could potentially
account for the orientation selectivity of these cells. However, a
majority of cells exhibit an exponent much greater than 1, which
indicates that the linear mechanism, and certainly the elongated
pattern of feedforward LGN inputs, is not enough to explain the
sharpness of orientation tuning. In other words, cortical mecha-
nisms play a significant role in sharpening the orientation tuning
for these cells.

The distribution shown in Fig. 3a is somewhat broader than that
reported in Anzai et al. (1999b); it contains several higher values.
However, this could be due to the fact that effective contrast of the

Fig. 2. (a) Scatter plot of the orientation-tuning halfwidths measured with
sinusoidal gratingsversushalfwidths as predicted from spatio-temporal RF
profiles for the population of cells analyzed. Diagonal line indicates a
one-to-one correspondence between measured and predicted tuning half-
widths. The majority of points fall below the line, indicating that the
measured halfwidth tends to be smaller than predicted. (b) Population
distribution of halfwidths of predicted orientation tuning. The arrow indi-
cates the mean of the distribution (mean5 28.3,s.d. 5 10.0 deg). (c) Pop-
ulation distribution of halfwidths of measured orientation tuning. The arrow
indicates the mean of the distribution (mean5 15.8,s.d. 5 5.7).

Fig. 3. (a) Distribution of exponents needed to match the measured and
predicted orientation-tuning curves. The arrow indicates the geometric mean
(3.15) of the distribution. (b) Relationship of exponent with halfwidth of
measured and predicted orientation tuning. Filled circles correspond to
predicted halfwidths and open circles correspond to measured halfwidths.
There is a significant but weak positive correlation~r 2 5 0.170, slope5
1.434, P , 0.05) between exponents and halfwidths for the predicted
curves, and a significant but weak negative correlation for the measured
curves~r 2 5 0.139, slope5 20.732,P , 0.05).
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grating stimulus is higher than that of the 2D m-sequence noise
stimulus, and hence, the response gain of the neuron may have
been different for each stimulus. This could bias exponents toward
higher values. In fact, the distribution of exponents estimated from
neuron’s responses to stimuli of various contrasts, a condition that
may be more analogous to the one in our study, exhibits a shape
similar to the distribution in Fig. 3a (Albrecht & Hamilton, 1982).

Because an expansive nonlinearity has the effect of sharpening
tuning, we would expect that the higher the exponent the sharper
the orientation tuning. Fig. 3b shows the relationship between the
magnitude of the exponent and the halfwidth of tuning. The half-
widths of the measured (open circles) and predicted (filled circles)
orientation-tuning curves are plotted as a function of the exponent
for each cell. There is a weak but significant positive correlation of
exponents with predicted tuning halfwidth~r 2 5 0.170, slope5
1.434,P , 0.05), and a weak but significant negative correlation
of exponents with measured tuning halfwidths~r 2 5 0.139,
slope5 20.732,P , 0.05). This indicates that there is a tendency
for cells whose RF properties impose only broad orientation se-
lectivity to have a large exponent which makes their output very
sharply tuned for orientation.

The results shown in Fig. 3 suggest that the cortical nonlinear-
ity plays a significant role in sharpening the orientation tuning for
some cells. However, as shown in Fig. 2, the linear mechanism
alone can provide a moderate to narrow orientation tuning. By
definition, the narrowness of the predicted tuning width is solely
attributed to the RF geometry such as the size and shape. Next, we
describe how the predicted tuning width depends on the RF ge-
ometry and examine if the measured tuning width also exhibits a
similar dependency.

As illustrated in Fig. 1b, the predicted orientation-tuning curve
is obtained as a section along the semicircle that goes through the
RF in the frequency domain. Therefore, moving the RF in the
frequency domain away from the origin and decreasing the extent

along thev axis both serve to decrease the orientation-tuning half-
width. In other words, the orientation-tuning halfwidth is propor-
tional to the standard deviation~sv! along thev dimension of the
RF in the frequency domain, and is inversely proportional to the
optimal spatial frequency~ fo! of the cell. Sincesv and fo are
inversely proportional to the subregion length~sL! and width~sW!,
respectively [see eqns. (4) and (5)],

Orientation-tuning halfwidth@ sW0sL 5 10AR, (7)

whereARdenotes the subregion aspect ratio as defined in eqn. (3).
Intuitively, the more elongated the subregions are, the narrower
the orientation tuning becomes. When the relationship of eqn. (7)
is plotted on a log–log axis, it becomes a straight line with a slope
of 21.

Fig. 4a shows the predicted (filled circles) and measured (open
circles) tuning halfwidth as a function of the subregion aspect ratio
on a log–log axis. As expected, the predicted orientation-tuning
halfwidth is inversely proportional to the subregion aspect ratio.
The slope of the regression line is20.854~r 2 5 0.832,P , 0.01,
log–log axis). However, the measured orientation-tuning half-
widths scatter uniformly within the triangular region bounded by
the predicted halfwidths and the constant lower limit (about 8 deg)
of the tuning halfwidth. We find only a weak correlation between
the measured halfwidths and subregion aspect ratio, accounting for
only 26% of the variance (Fig. 4a,r 2 5 0.261, slope5 20.431,
P , 0.01, log–log axis). In other words, the RF shape as described
by the subregion aspect ratio plays a minimal role in determining
the measured tuning halfwidth. Watkins and Berkley (1974) also
found a similar degree of correlation between the measured half-
width and the subregion aspect ratio.

Having examined the dependency of orientation-tuning half-
width on an RF shape parameter, we now examine the role of RF

Fig. 4. (a) Relationship of subregion aspect ratio with halfwidths of measured and predicted orientation tuning. Filled circles correspond
to predicted halfwidths and open circles correspond to measured halfwidths. Subregion aspect ratio accounts for 83% of the variance
~r 2 5 0.832, slope5 20.854,P , 0.01, log–log axis) in predicted tuning halfwidth but only 26% of the variance~r 2 5 0.261, slope5
20.431,P , 0.01, log–log axis) in measured tuning. (b) Relationship of subregion length with halfwidths of measured and predicted
orientation tuning. Symbols are the same as part (a). Subregion length is correlated with predicted halfwidths~r 2 5 0.413, slope5
20.514, P , 0.01, log–log axis), but not with measured halfwidth~r 2 5 0.099, slope5 20.227, P 5 0.058, log–log axis).
(c) Relationship of subregion width with halfwidths of measured and predicted orientation tuning. Symbols are the same as part (a).
Subregion width is not correlated with predicted halfwidths~r 2 5 0.034, slope5 0.196, P 5 0.277, log–log axis) or measured
halfwidths ~r 2 5 0.027, slope5 0.158,P 5 0.334, log–log axis).
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size parameters. As indicated by eqn. (7), the predicted orientation-
tuning halfwidth depends on two RF size parameters; subregion
length and width. Figs. 4b and 4c show orientation-tuning half-
widths as a function of subregion length and width, respectively.
The predicted halfwidth tends to decrease with subregion length
(Fig. 4b, r 2 5 0.413, slope5 20.514,P , 0.01, log–log axis).
This is consistent with the prediction from eqn. (7). However, the
predicted tuning halfwidth shows no significant correlation with
the subregion width (Fig. 4c,r 2 5 0.034, slope5 0.196, P 5
0.277, log–log axis). This is simply because the range of subregion
width is quite small (0.54–2.35 deg) compared to that of subregion
length (1.86–10.02 deg) and subregion width and length are not
strongly correlated~r 2 5 0.307, slope5 0.415,P , 0.01, log–log
axis). On the other hand, the measured tuning halfwidths show no
significant correlation with either subregion length (Fig. 4b,r 2 5
0.099, slope5 20.227, P 5 0.058, log–log axis) or subregion
width (Fig. 4c, r 2 5 0.027, slope5 0.158,P 5 0.334, log–log
axis), thus indicating that orientation-tuning halfwidth is indepen-
dent of the RF size. Watkins and Berkley (1974) found orientation-
tuning halfwidth to increase with the RF size. However, this could
be partially due to the fact that complex cells, which are known to
exhibit somewhat larger RF size (Hubel & Wiesel, 1962) and
broader orientation tuning (Henry et al., 1974; Ikeda & Wright, 1975)
than simple cells, are included in their data with simple cells.

Finally, we have examined the halfwidth of orientation tuning
as a function of the number of subregions in the RF. With more
subregions, a grating of nonoptimal orientation might overlap more
subregions and thus be a poor stimulus for the cell. We found that
this is not the case; there is no significant correlation between
number of subregions and measured orientation-tuning halfwidth
~r 2 5 0.031, slope5 0.287,P 5 0.299).

Discussion

We find that measured orientation tuning of simple cells in the
cat’s striate cortex deviates from the orientation tuning predicted
by linear spatial summation in two fundamental ways. First, the
measured tuning curves are more sharply tuned than the predicted
curves (Fig. 2). Second, the measured tuning halfwidths are largely
independent of RF shape and size, the factors that determine the
halfwidth of the predicted tuning (Fig. 4).

Both of these differences between measured and predicted ori-
entation tuning can be accounted for by the effects of a cortical
nonlinearity in the form of an expansive exponent. We calculated
the magnitude of the exponent needed to be applied to predicted
orientation tuning to match the measured orientation tuning
(Fig. 3a). Cells whose RF characteristics impose only broad ori-
entation tuning tend to have large exponents that ensure that their
output becomes highly selective for orientation (Fig. 3b). Our
overall conclusion is that both linear and nonlinear mechanisms
play a role in the sharpness of orientation tuning. However, since
the nonlinear mechanism can change the tuning halfwidth by 2–3-
fold and serves to make tuning halfwidth independent of RF pa-
rameters, it therefore plays quite an important role in determining
the sharpness of orientation tuning.

RF shape, in particular the aspect ratio of subregions, has been
an area of intense interest because feedforward models suggest that
simple cells acquire orientation selectivity from elongated patterns
of LGN inputs (for a review, see Sompolinsky & Shapley, 1997).
Aspect ratio of subregions has been measured quantitatively in
both extracellular and intracellular recordings. Our distribution of
subregion aspect ratios is consistent with other extracellular mea-

surements (Jones & Palmer, 1987a) but has a larger mean (4.3vs.
1.7) than aspect ratios measured intracellularly (Pei et al., 1994).
Intracellular recordings measure aspect ratios based on excitatory
postsynaptic potentials (EPSPs) and are thought to faithfully re-
flect the excitatory input from LGN neurons. Therefore, the intra-
cellular data suggest that elongated patterns of LGN inputs alone
are not sufficient to account for the sharpness of orientation tuning
(see also Volgushev et al., 1996). Our results indicate that cortical
factors such as spatially opponent inhibition (Ferster, 1988; Troyer
et al., 1998), which is reflected in extracellular recordings, increase
the subregion aspect ratio, but not enough to account for the mea-
sured orientation-tuning width.

Our finding that the linear mechanism is generally insufficient
to account for the sharpness of measured orientation tuning indi-
cates that a nonlinear process of cortical origin plays a significant
role. The linear mechanism has two origins: subcortical and cor-
tical. Cross-correlation analysis of LGN and simple cells have
shown that LGN input helps to determine the linear filtering prop-
erties (Reid & Alonso, 1995), but cortical mechanisms such as a
spatially opponent inhibition (Ferster, 1988) are also thought to
contribute to the linear filtering properties (Pollen & Ronner, 1982;
Troyer et al., 1998). Our data therefore do not discriminate be-
tween the contribution of feedforward LGN input and that of the
cortical network in determining optimal orientation preference.
However, they do show that the nonlinearity, which we attribute to
an expansive exponent, accounts for the sharpness of orientation
tuning. Because spatial summation of synaptic inputs to simple
cells is remarkably linear (e.g. Jagadeesh et al., 1997) and the
effects of subcortical nonlinearites do not seem to appear in cor-
tical neurons (e.g. Emerson et al., 1989), the expansive nonlinear-
ity must be attributed to cortical factors. In other words, nonlinear
cortical mechanisms serve to sharpen orientation tuning.

Potential neural mechanisms that could give rise to an expan-
sive nonlinearity run the gamut from intracellular to network prop-
erties (for a review, see Koch & Poggio, 1992). For example,
nonlinear interactions in the dendritic arbor and the spike-triggering
mechanism at the soma of simple cells might work to produce spik-
ing with an exponential relationship to the synaptic input. On the
other hand, cortical network properties might give rise to an ex-
pansive nonlinearity as well. Contrast normalization of the type pro-
posed by Heeger (Heeger, 1992a) could dynamically adjust the
response gain of a neuron and mimic an expansive nonlinearity when
the effects are averaged over time (Heeger, 1992b). There is also a
suggestion that recurrent cortical excitation could amplify input sig-
nals (e.g. Douglas et al., 1995) and could therefore provide the neu-
ronal basis for the expansive nonlinearity. Such recurrent excitation
has been used to explain the sharpness of orientation and direc-
tional selectivities (Douglas et al., 1995; Somers et al., 1995).

The ability of the cortical nonlinearity to shape orientation
tuning has important implications for the properties of simple
cells. A perfectly linear simple cell would have to rely on RF
attributes such as subregion aspect ratio and size to determine the
sharpness of orientation tuning. On the other hand, an expansive
nonlinearity can act to determine the sharpness of tuning indepen-
dent of these parameters. This serves to ensure that orientation is
represented equally well regardless of RF size and shape.
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