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SUMMARY

Human perceptual inference has been fruitfully char-
acterized as a normative Bayesian process in which
sensory evidence and priors are multiplicatively
combined to form posteriors from which sensory
estimates can be optimally read out. We tested
whether this basic Bayesian framework could
explain human subjects’ behavior in two estimation
tasks in which we varied the strength of sensory
evidence (motion coherence or contrast) and priors
(set of directions or orientations). We found that
despite excellent agreement of estimates mean and
variability with a Basic Bayesian observer model,
the estimate distributions were bimodal with unpre-
dicted modes near the prior and the likelihood. We
developed a model that switched between prior
and sensory evidence rather than integrating the
two, which better explained the data than the Basic
and several other Bayesian observers. Our data
suggest that humans can approximate Bayesian
optimality with a switching heuristic that forgoes
multiplicative combination of priors and likelihoods.

INTRODUCTION

There is apparent tension between theories that propose that

human decision making can be modeled as optimal Bayesian

inference and theories that suggest that human decision making

is fundamentally heuristic and subject to bias. Many aspects of

human cognition, such as language acquisition and processing

(Chater and Manning, 2006; Tenenbaum et al., 2006), action

selection (Chater and Manning, 2006; Körding and Wolpert,

2004; Tenenbaum et al., 2006; Wolpert et al., 1995), prediction

(Griffiths and Tenenbaum, 2006), reasoning (Tenenbaum et al.,

2011), and sensory inference (Fetsch et al., 2013; Girshick

et al., 2011; Knill and Richards, 1996; Stocker and Simoncelli,

2006; Weiss et al., 2002), have been modeled as optimal read-

outs of statistical inference processes, for example, starting

from the notion that visual input offers inherently ambiguous

information about the state of the world (von Helmholtz, 1924).

Bayesian models propose optimal solutions to incorporating
prior knowledge to resolve this ambiguity (Knill and Richards,

1996). Indeed, human visual perceptual estimates have been

shown to follow Bayesian predictions for estimates of motion

speed (Jogan and Stocker, 2015; Stocker and Simoncelli,

2006; Vintch andGardner, 2014;Weiss et al., 2002) and direction

(Chalk et al., 2010), spatial location (Berniker et al., 2010; Tassi-

nari et al., 2006; Vilares et al., 2012), ambiguous 3D structure

(Adams et al., 2004; Freeman, 1994), depth (Ban et al., 2012;

Kim et al., 2015; Ramachandran, 1988), and edge orientation

(Girshick et al., 2011).

While this Bayesian framework is elegant and appealing, it is

well known that human decisions can deviate from normative

standards (Cheadle et al., 2014; Nassar et al., 2016; Neiman

and Loewenstein, 2011; Rahnev and Denison, 2016; Sharot

et al., 2011; Tversky and Kahneman, 1974) by showing inappro-

priate adherence to strategies that are non-optimal in the current

context (Abrahamyan et al., 2016; Acerbi et al., 2014; Beck et al.,

2012; Fischer and Whitney, 2014; Raviv et al., 2014) or use

simpler, computationally frugal strategies to incorporate priors

and improve cognition (Nassar et al., 2010; Rahnev and Denison,

2016; Raviv et al., 2012; Vul et al., 2014; Wilson et al., 2013).

However, optimal and heuristic frameworks need not be at

odds when considering the difference between computational

goals of a system and constraints on implementation to achieve

these goals (Marr, 1982; Nassar et al., 2010; Rahnev and Deni-

son, 2016; Vul et al., 2014; Wilson et al., 2013). In this view, opti-

mality theory precisely describes the target for what a system

should achieve, but attaining this goal might be subject to con-

straints of implementation that require suboptimal or heuristic

solution. Take, for instance, the central computation in Bayesian

inference in which priors and likelihoods are multiplied to form a

posterior distribution. This is the optimal solution to incorpo-

rating these two pieces of information, and while proposals exist

for how these might be computed by neural populations (Beck

et al., 2008; Girshick et al., 2011; Jazayeri and Movshon, 2006;

Ma et al., 2006; Pouget et al., 2013; Wei and Stocker, 2015),

less complex computations may be easier to instantiate in neural

circuits. An attractive alternative is that simple shortcuts or heu-

ristics can achieve behavior that meets or approximates the

normative goals of Bayesian calculations without complex com-

putations (Moreno-Bote et al., 2011; Raviv et al., 2012; Wilson

et al., 2013). Simpler heuristic approaches that approximate

Bayesian inference without integrating prior and likelihood would

reduce the computational complexity required to achieve nearly

optimal behavior.
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Figure 1. Motion Direction Estimation Task in which Sensory

Evidence and Priors Were Independently Manipulated

In each trial (A), subjects reported the direction of motion of a random dot

stimulus. The strength of sensory evidence was manipulated by changing the

percentage of dots (6%, 12%, or 24% in different randomly interleaved trials)

moving coherently (dark arrows, not actually shown in stimulus) with the re-

maining dots moving in random directions (gray arrows). The strength of the

priors wasmanipulated by controlling the width of the distribution of directions

in a block of trials (B; brown, red, orange, and green distributions are priors

with standard deviations of 80�, 40�, 20�, and 10�, respectively) while keeping

the mean, 225�, the same. Priors were randomized across 5 blocks of about

200 trials (C), while sensory evidence was randomized within each block.
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We examined human behavior in a motion direction estimation

task and found that while subjects approximated an optimal

Bayesian observer in summary statistics, their trial-by-trial

estimates suggested a heuristic implementation that did not

require integration of prior and likelihood. Our estimation task

was designed to test conformity with a commonly used formula-

tion of a Bayesian observer (Girshick et al., 2011; Stocker and Si-

moncelli, 2006; Wei and Stocker, 2015), which we call the Basic

Bayesian observer. We found evidence that behavior whose

summary statistics matched predictions of the Basic Bayesian

observer was actually better modeled as a process that switches

between prior and sensory likelihood rather than integrates the

two as would be expected by the optimal Basic Bayesian

computation. That is, the Basic Bayesian observer could fit the

mean and variance of direction estimates, but not the shape of
2 Neuron 97, 1–13, January 17, 2018
estimate distributions, which were bimodal with peaks near the

prior mean and the presented direction. We captured this bimo-

dality in a Switching observer model, which qualitatively and

quantitatively provided better fits to the behavioral data than

the Basic Bayesian observer, including variants that relaxed

various assumptions about the shape of priors and likelihoods

aswell as themethod of reading out the posterior. Thus, by using

the Basic Bayesian framework as a normative benchmark, we

found that humans in our task show behavior that approaches

the goals of optimality in summary statistics but was best char-

acterized as being implemented by a simpler computational

heuristic of switching, rather than multiplicatively combining,

priors and likelihoods.

RESULTS

Basic Bayesian Observer Accounts for Subject Estimate
Mean and Variability
We independently manipulated the strength of sensory evidence

and priors in a motion direction estimation task (Figure 1) to test

whether subjects’ behavior conformed to a Basic Bayesian

observer model of sensory inference (Girshick et al., 2011). On

each trial, a brief (300 ms) presentation of random dot motion

was presented while subjects fixated on a central fixation point.

Subjects were instructed to report the direction of motion of the

dots by turning an electronic paddle wheel to move a white line

from a random initial orientation to point in the direction ofmotion

that they had perceived and then confirmed that report with a

button press. Subjects were not given explicit feedback as to

whether they were correct or not; instead, a green feedback

line that pointed in the true direction of motion would be shown

afterward. We dissociated the effects of sensory evidence and

priors by independently manipulating the strength of motion by

changing the percentage of dots moving in the same direction

(motion coherence) and the strength (sharpness) of the distribu-

tion of motion directions over trials within blocks of 202–226 tri-

als. We reasoned that we should be able to test whether our sub-

jects’ behavior conformed to the predictions of a Basic Bayesian

observer by examining themean and variability of their estimates

as a function of the strength of sensory evidence and priors.

We compared subjects’ behavior to that of a basic model of

sensory Bayesian inference, similar to other models that have

been used to explain orientation and speed biases (Figure 2A;

Girshick et al., 2011; Stocker and Simoncelli, 2006; see STAR

Methods for details). Briefly, the Basic Bayesian observer for-

malizes prior and sensory likelihood as von Mises distributions,

which are multiplied together to give a posterior distribution

from which the estimated direction is chosen as the one with

the maximum a posterior probability and selected with some

motor noise and probability of lapsing. On each trial, a particular

motion direction, qtrue, is displayed and the Basic Bayesian

observer simulates a sensory likelihood distribution (black

distribution, Figure 2A) as a von Mises. This distribution is

centered on qe, a draw from a sensory evidence distribution

centered on qtrue. Thus, on average, the direction with the highest

sensory likelihood is qtrue but, on any given trial, can differ from

the true direction. Prior distributions (brown distribution, Fig-

ure 2A) were von Mises, same as the true prior distribution,
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Figure 2. Basic Bayesian Observer Model

Example Bayesian integration for two trial instances of the same motion direction (A). To estimate the motion direction, qtrue, of a stimulus, (e.g., 90�), the Basic

observer obtains a visual measurement, qe, from an evidence distribution that simulates trial-to-trial variability of sensory evidence (e.g., qe1 = 45� in trial 1, top

row, or qe2 = 135� in trial 2, bottom row). Sensory likelihood is modeled as a distribution around qe (black distributions) and then multiplied against the prior

distribution (brown distributions) into a posterior (pink distributions). Percepts are obtained by reading out the posterior mode and are then transformed by a noisy

motor process into an estimate bq. Over many trials, the Basic Bayesian observer generates an estimate distribution (red outlined distribution). The Basic Bayesian

observer predicts that when the prior is strong (B; green lines) the mean of the estimate distributions (top) will be more biased toward the prior mean (blue dashed

line) and will be less variable (i.e., the estimate distribution will have lower standard deviation, bottom) than when the prior is weak (brown lines).
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whosemaximumwas the actual prior direction but widthwas a fit

parameter. After multiplying prior and sensory likelihood, the

resulting posterior (pink distribution, Figure 2A) mode was taken

to be the predicted percept qp. To simulate lapses, on a small

proportion of trials pr , we set the observer’s percept to a random

direction. The distribution of percepts formed over trial instances

of the motion was convolved with motor noise formalized as a

von Mises distribution of concentration km. The width of the

sensory likelihood and estimate distribution for each motion

coherence (three fit parameters ke), width for each prior distribu-

tion (four fit parameters kp), and the motor noise (km), as well as

the lapse rate (pr ), were fit to the behavioral data on a trial-by-trial

basis using maximum likelihood estimation.

The Basic Bayesian observer predicts that subject mean di-

rection estimates will be biased toward the mean of the prior

and that this effect is influenced by both the strength of sensory

evidence and the strength of the prior (Figure 2B). These predic-

tions were borne out in the behavioral data. When sensory

evidence was strong (motion coherence of 24%), subject

mean estimates followed the actual direction presented (diago-

nal one-to-one line, Figure 3A, left column). When sensory

evidence was weak (motion coherence 12% and 6%, center

and right column), subject mean estimates systematically devi-

ated from the veridical (diagonal one-to-one line) toward the prior

mean (blue horizontal line at 0�). This bias was stronger for stron-

ger priors in which the distributions of motion directions pre-

sented had smaller standard deviations (from 80� to 10�, brown

to green). The bias was also the largest for directions displayed

nearer to the prior, producing a nonlinear relationship between

displayed and estimated directions (curved fit lines, Figure 3A,

right column). This effect is due to the circularity of the direction

space: when the displayed direction is opposite from the mean

of the prior, the posterior estimate is pulled in both directions

away from the likelihood, resulting in no mean effect of the prior.

These effects on the mean estimates conformed to the expecta-
tions of the Basic Bayesian observer whose fits to the data are

shown as solid lines (Figure 3A).

The Basic Bayesian observer also predicts that subject esti-

mate variability should be reduced as both the sensory evidence

and prior become stronger. These predictions were also borne

out in the behavioral data. When sensory evidence was strong,

subject estimate variability was low (Figure 3B, left column)

and relatively unaffected by prior strength. When sensory evi-

dence was weak (center and right column), variability was overall

larger but reduced as priors became stronger (brown to green),

which the observer model predicts because stronger priors will

increase confidence in estimates and result in larger biases but

lower variability, effectively minimizing expected deviation from

true motion directions over trials. The variability was also lower

for directions displayed nearer to the prior mean. This effect,

similar to effects on mean estimates, is a result of the circular

space of direction. Thus, the Basic Bayesian observer can

account for the effect of the prior and its strength on both

mean and variance of subjects’ estimates. Moreover, model

fits verify that subjects’ estimates incorporated prior knowledge

about the motion direction distributions as the full Basic

Bayesian observer model provided a better fit to the behavioral

data than one that exclusively relied on sensory likelihood (uni-

form priors, the average Akaike information criterion [AIC] differ-

ence [AICMaximum likelihood – AICBasic Bayesian], or DI, between the

maximum likelihood observer and the Basic Bayesian observer

was 13,950, 95% CI [10,247 17,653] over subjects [n = 12 sub-

jects], in favor of the Basic Bayesian observer for all 12 subjects,

where a difference of 2 is equivalent to adding another parameter

to the model).

Basic Bayesian Observer Fails to Account for Bimodality
of Estimate Distributions
While the Basic Bayesian model could account for the summary

statistics of subjects’ estimate distributions, it did a poor job of
Neuron 97, 1–13, January 17, 2018 3
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Figure 3. Basic Bayesian Observer Model

Fit to Mean and Variability of Subjects’ Esti-

mates

Subject estimates mean (A) and standard devia-

tion (B) averaged over 12 subjects with the Basic

Bayesian observer’s best fit (lines, fit on a subject-

by-subject basis and averaged over subjects) for

four prior conditions (80� to 10� SD, brown to

green colors) and three motion coherences (left,

middle and right panels). Errors for data andmodel

predictions are SEM over subjects. Note that SEM

are sometimes too small to be visible. Blue dashed

lines are prior means.
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predicting the full distribution shapes, which had a bimodal

rather than a unimodal shape (pink histogram with red contour,

Figure 2A). Contrary to the Basic Bayesian observer prediction

that estimate distributions should have one peak (black curves,

subject-averaged data shown for 6% coherence, Figure 4; see

Figures S1 and S2 for subject-by-subject distributions) lying

somewhere between the mean of the prior and sensory likeli-

hood, subject estimate distributions were characterized by two

peaks: one at the motion direction (gray tick mark) and one at

the prior mean (blue line). The two peaks were clearest when

the stimulus direction was the furthest from the prior mean

(e.g., 140� clockwise of the prior mean tagged with the number

1). The peak at the prior mean was also higher than the peak at

the motion direction when the prior was stronger (top brown

versus red histograms taggedwith numbers 1 and 2). Thus, while

the mean and standard deviation of estimates conformed to the

expectations of the Basic Bayesian observer, the full shapes of

the distributions being bimodal rather than unimodal were not

predicted.

To account for the bimodal estimate distribution, we developed

a Switching observer. The model represents sensory likelihood

and priors (black and brown histograms, Figure 5A) just like the

Basic Bayesian observer, with the same fit parameters (three ke
that quantify sensory evidence strengths, four kr for prior

strengths, one rr for the probability of random estimation, and

one km for motor precision), but rather than forming a posterior

by multiplying the two distributions, switches between estimates

chosen from the prior distribution (brown histogram) and the sen-

sory likelihood (black histogram), producing bimodal instead of

unimodal estimate distributions (Figure 5A versus Figure 2A,

pink histogram with red contours). Guided by the observation

that the subject estimate distribution peaks at the prior mean

were higher than the peak at the motion direction when the prior

was stronger, we defined switching as a competitive mechanism

controlledby thestrengthofpriorandsensoryevidence (Figure5A;

see STAR Methods, Equation 6). As this switching probability is
4 Neuron 97, 1–13, January 17, 2018
governed by the widths of sensory likeli-

hood and prior, no more parameters

are needed for the Switching observer

compared to theBasicBayesianobserver.

Theswitchingestimationprocess issimilar

to a process where two noisy representa-

tions of sensory likelihood and prior

compete in a winner-take-all manner.
Fits of the Switching observer to the behavioral data qualita-

tively reproduced the mean, variability, and bimodality of the

estimate distribution data and quantitatively fit better than the

Basic Bayesian observer (see Figure S3A for switching probabil-

ity estimates and S3B for all model fit parameters). When coher-

ence was high, the Switching observer chooses estimates from

the sensory likelihood more often, and therefore, mean esti-

mates were veridical (one-to-one line, Figure 5B, left column)

and variability was low (Figure 5C, left column, solid lines are

model fits). When coherence was low, the Switching observer

chooses more estimates from the prior distribution, resulting in

more bias toward the mean of the prior (Figure 5B, right column)

but less variability (from brown to green, Figure 5C, right column)

as more estimates are chosen from only the prior rather than

both prior and sensory likelihood. As designed, the Switching

observer created two peaks in the estimate distributions as

observed in the data (Figure 5D, solid curves). A direct model

comparison of the Basic Bayesian and Switching observer fit

to the subjects’ data showed that switching outperformed the

Bayesian model for 8 out of 12 subjects (Figure 5E, the average

AIC difference, AICBasic Bayesian – AICSwitching, was 395, 95% CI

[96 695] over subjects in favor of switching).

While there is clearly variation in how well the Switching

observer fits individual subject’s data, examination of estimation

distributions for two well and two poorly fit subjects (Figure 5F,

top and bottom, respectively; see Figures S1 and S2 for

subject-by-subject distributions) indicates that bimodality (distri-

butions near the prior and sensory evidence, blue line and gray

tick mark) is evident in subject-by-subject data. Moreover,

poorly fit subjects tend to have more random estimates, not a

stronger tendency to form a single distribution near the expected

posterior of the Basic Bayesian observer. This increased

randomness could be due to subjects not having a completely

fixed and noiseless estimate of the prior mean, which is assumed

by the Switching observer. Indeed, if we relax this assumption by

allowing there to be trial-to-trial variation of the prior mean by



Figure 4. Basic BayesianObserverModel Fails to Predict Bimodality

of Subject Estimates

Subjects’ estimate distributions (10� bins) show bimodality with one peak near

the prior and another at the presented motion direction (different colors

represent different prior strengths, and data are shown for 6% motion

coherence). Estimate distributions were calculated for each subject, then

averaged over subjects (see Figures S1 and S2 for subject-by-subject esti-

mate distributions). Bimodality is most evident for conditions in which the prior

and presented motions are very different (two example histograms are shown

enlarged at the top; circled numbers indicate which distributions these are).

The Basic Bayesian observer predicts a single peak in between the prior and

the presentedmotion direction (curves, average fits over subject). Blue dashed

line is the mean of the prior. The ordinates of all axes were scaled between

0 and the maximum of each histogram to maximize visibility.
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sampling from the prior distribution, this Switching with prior

sampling observer outperformed the Basic Bayesian for all 12

subjects with an average AIC difference of 478, 95% CI

[262 693].
Not only did the Switching observer better fit the behavioral

data, but it did so with fit parameters that showed that subjects

had more accurate estimates of prior strength than the Basic

Bayesian observer. We compared the median over subjects of

the four subjective prior strength parameters fitted by the

Switching observer to each subject’s data to veridical strength

and found that although the Switching observer’s median fitted

prior over subjects were significantly weaker than the 80� and

40� veridical priors (91� median SD, W = 7, p = 0.009 and 72�

median SD, W = 0, p = 0.005, respectively, n = 12 subjects,

two-tailed one-sample Wilcoxon test), the Switching observer’s

fitted prior standard deviations for the 20� and 10� priors did not

significantly differ from the veridical prior standard deviations

(31� median SD, W = 15, p = 0.06 and 18� median SD, W = 28,

p = 0.42 for the 20� and 10� priors, n = 12 subjects, two-tailed

one-sample Wilcoxon test). In contrast, the Basic Bayesian ob-

server’s median fitted priors over subjects were significantly

weaker than the veridical priors for all priors except the 20� prior
(96� median SD, W = 0, p = 0.0005; 73� median SD, W = 1,

p = 0.0009; 38� median SD, W = 16, p = 0.08; 23� median SD,

W = 8, p = 0.012; for the 80�, 40�, 20�, and 10� priors, respec-

tively, n = 12 subjects, two-tailed one-sample Wilcoxon test),

which would suggest that the observers were unable to make

accurate estimates of the prior distribution.

Alternative Models
The bimodality in estimate distributions that the Switching

observer captures could have been a result of learning through

the trial block, but an analysis of early and late trials suggests

otherwise. Rather than switching between prior and sensory like-

lihood as prescribed by the Switching observer, subjects could

have relied primarily on sensory evidence in the early phase of

learning before the prior condition is learned and then primarily

on the learnt priors in later trials, resulting in bimodal estimate

distributions across a block. We used the slopes of estimates

versus displayed directions (Figure 3A) as a measure of how

biased subjects were by the prior (veridical is a one-to-one slope

and complete bias to the prior is a slope of 0). Comparison of

these slopes in early versus late trials of prior blocks suggested

that priors were learned quickly, consistent with observations

from other studies (Berniker et al., 2010). The slope in the first

hundred trials were well correlated with the last 100 trials’ slopes

(r = 0.84, 95%CI [0.73 0.94] over subjects, n = 12 subjects, all p <

0.01: p = 1.7e�6, p = 4.2e�5, p = 4.1e�6, p = 1.05e�6,

p = 7e�3, p = 3e�4, p = 2.9e�4, p = 0.33, p = 2.1e�5,

p = 7e�3, p = 9.1e�8, p = 9.8e�5, n = 12 combinations of priors

and coherences, respectively, for subjects 1 to 12, two-tailed

Pearson correlation). Moreover, a modified version of the Basic

Bayesian observer confirmed that priors were learned quickly.

Specifically, prior strength was allowed to grow exponentially

across trials with a learning rate parameter, t (see STAR

Methods). This analysis showed that, on average, 95% of prior

strength was learnt within 45 trials of the typical 8,000 trials

that subjects undergo during the experiment (t = 14.9, 95% CI

[6.1 23.7] over subjects, n = 12 subjects). In addition, we fitted

the Switching observer to the first and last halves of each sub-

ject’s data and compared the model fit parameters between

halves. The model goodness of fit, the AICs, did not significantly
Neuron 97, 1–13, January 17, 2018 5
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Figure 5. Switching Observer Fits of Summary Statistics and Bimodality of Subject Estimate Distributions

(A–D) The Switching observer (A) is based on the same likelihood and prior distributions as the Basic Bayesian observer but, rather than multiplying the two

together, switches between estimates from the priormean and likelihood according to their relative strengths. The Switching observer fits subject estimatesmean

(B) and standard deviation (C) as well as the bimodal estimate distributions (D). All conventions for (A)–(D) are the same as Figures 2, 3, and 4.

(E) AIC differences between the Basic Bayesian and the Switching observers for each subject.

(F) Four example subjects representing good to poorer fits of the Switching model. Bimodality is evidenced by distributions at the prior (blue line) and sensory

evidence (gray tick mark), for five motion directions distant from the prior, at 6% coherence and for the 80� prior. See Figure S3 for switching probabilities and

Switching observer’s best-fit parameters and Figures S4 and S5 for results in the motion direction experiment with 80� prior only. Conventions for (F) are as in

Figure 4 except that a histogram bin of 15� was used instead of 10� to reduce noise.
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differ between the first and second halves of the experiment for

each subject (Z = 32, p = 0.62, Wilcoxon signed rank test, n = 12

subjects). The prior strength best-fit parameters also did not
6 Neuron 97, 1–13, January 17, 2018
significantly change for each subject between the first and the

second halves of the experiment (Z = 37, p = 0.90 for 80� prior;
Z = 25, p = 0.30 for 40� prior; Z = 23, p = 0.23 for 20� prior;
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Figure 6. Alternative Model Comparisons

(A and B) The AIC difference between alternative Bayesian observers and the

Switching observer averaged over subjects (A) and number of participants

better fit by the Switching observer (B) evidence stronger support for the

Switching observer.

(C–M) Example subject estimate distributions (brown histograms) with

observer model simulated predictions (red curves) demonstrate failure modes

of alternative models: Switching (C), BayesMAP long-tailed prior (D), Bayes LS

long-tailed prior (E), Bayes MAP long-tailed LLH (F), Bayes LS long-tailed LLH

(G), BayesMAPmotion energy LLH (H), Bayes LSmotion energy LLH (I), Bayes

MAP long-tailed prior and LLH (J), Bayes LS long-tailed prior and LLH (K),

Bayes sampling (L), and Switching posterior (M). Estimate distributions are for
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Z= 18, p = 0.10 for 10� prior, n = 12 subjects, two-tailedWilcoxon

signed rank test). These results indicate that subjects quickly

learnt the prior strengths and switched across the experiment.

The Basic Bayesian observer may have failed to capture the

bimodality of estimate distributions because of the assumptions

we made about the shape of the prior distribution. In particular,

we assumed a peaked, bell-shaped distribution (von Mises)

matching the actual distribution of directions, but subjects may

have priors that allow for higher probability of random directions.

For example, subjects may have learned a prior with long tails in

which there is some probability that motion directions are cho-

sen not from the actual prior, but from a random direction. The

multiplication of such a longer-tailed prior distribution could

result in two peaks and thus better fit the bimodal behavioral

data. We therefore tested a variation of the Basic Bayesian

observer in which the prior representation could have different

shapes as parameterized by a mixture distribution of uniform

and von Mises (see STAR Methods). This Bayesian observer

with long-tailed priors did not fit the behavioral data better than

the Switching observer (Figure 6A, Bayes maximum a posteriori

[MAP] tailed prior). The average AIC difference was 483, 95% CI

[219 756] over subjects, in favor of switching for 10 out of 12

subjects (Figure 6B). The estimate distributions produced by

the model were bimodal but qualitatively (Figure 6D) and quanti-

tatively (Figure 6A) differed from the subject estimate distribu-

tions. In particular, priors that have a strong enough effect to

create a bimodal distribution when the presented direction and

the mean of the prior are far away (Figure 6D, left column) are

too strong for when likelihood and prior mean are close together

(Figure 6D, center column). This causes there to be amuch larger

peak than present in the data at the prior mean in these condi-

tions, which were well accounted for by the Switching observer

(Figure 6C).

Our models did not take into account the stochasticity of the

stimulus, which could give rise to bimodal estimate distributions

without explicitly modeling switching. For each stimulus presen-

tation, some dots moved coherently while others moved in

random directions. This amounts to sampling dot directions

from a long-tailed delta generative distribution (mixture of delta

and uniform), which peaks at the coherent direction and whose

peak amplitude is the coherence. This sensory likelihood distri-

bution shape could result in a bimodal estimate distribution

because of changes in the trial-by-trial stimulus statistics.

When random sampling produces a low proportion of coherent

dots, the likelihood is closer to uniform, resulting in a large

bias toward the prior. When more dots are coherent, the likeli-

hood will be more peaked and estimates will be biased toward

the presented direction. To test this hypothesis, we replaced

the vonMises sensory likelihoods in the Basic Bayesian observer

with sensory likelihoods based directly on the stimulus charac-

teristics (see STAR Methods). This indeed produced bimodal

estimate distributions when sensory likelihood and mean of the

prior were distant (Figure 6F, left column). However, analogous
6% motion coherence and the weakest prior (80� standard deviation) for

motion directions (gray tick mark) far from the prior mean (left), near the prior

mean (middle), and at the priormean (blue vertical bar, right). LS, least-squares

readout; MAP, Maximum a posteriori readout; LLH, likelihood.
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to the long-tailed prior model, the likelihood was too strong when

prior mean and presented direction were close together, result-

ing in poorer fits for these conditions (Figure 6F, center column).

The Switching observer provided a better quantitative fit of the

data (Figure 6A, Bayes MAP tailed likelihood [LLH]). The average

AIC difference was 829, 95% CI [342 1316] over subjects, in

favor of switching for 10 out of 12 subjects (Figure 6B). Model

variations in which sensory likelihood was derived from biologi-

cally plausible motion energy filters (Adelson and Bergen,

1985) also failed to reproduce the bimodality observed in the

data (Figure 6H). The average AIC difference was 1,377, 95%

CI [872 1881] over subjects, in favor of switching for all 12 sub-

jects (Figures 6A and 6B, Bayes MAP motion energy LLH).

We also combined the two above observer models to create a

model that included both a long-tail prior and likelihood function.

This observer again performed well when the presented direc-

tionwas far from the prior (Figure 6J, left column) but was outper-

formed by the Switching observer when presented direction and

prior mean were close together (Figure 6J, center and right

columns). In particular, the peak produced became too large

for directions nearly matched to the prior mean, and it quantita-

tively failed to produce better fits (Figure 6A, Bayes MAP tailed

LLH and prior). The average AIC difference was 429, 95% CI

[12 847] over subjects, in favor of switching for 9 out of 12

subjects (Figure 6B).

While both the Basic Bayesian and Switching observers are

predicated on learning the prior distribution, subjects may

have used information just from the previous trial (Abrahamyan

et al., 2016; Fr€und et al., 2014), for example, biasing estima-

tions on the previous motion direction, which would be a sam-

ple from the prior (Fischer and Whitney, 2014; Raviv et al.,

2012; Verstynen and Sabes, 2011) and thus approximate

Bayesian inference. If so, then trial estimates should be biased

toward the previous motion direction even if that direction is

opposite to the mean of the prior. However, when trials were

sorted such that current displayed directions were positioned

between prior mean and previous directions, subject estimates

were significantly biased toward the prior mean and not the

previous motion direction (the average estimate over all subject

trials was significantly biased toward the prior mean, distant

from the current direction by 4.35�, 95% CI [3.14 5.57],

n = 7,504 trials, which is significantly larger than 0), suggesting

that they learnt priors over stimulus history and did not solely

rely on the previous stimulus. The bias toward the prior was

significant for 4 out of 12 subjects (the average distance

between the estimate and the current direction was 2.93�,
95% CI [0.03 5.82] for subject 1, n = 758 trials; 21.40�, 95%
CI [17.30 25.51] for subject 2, n = 691 trials; 7.29�, 95% CI

[4.55 10.02] for subject 3, n = 801 trials; 12.24�, 95% CI [6.70

17.78] for subject 10, n = 548 trials). The remaining 8 out of

12 subjects were not significantly biased in either direction

(the average distance between the estimate and the current di-

rection was �0.56�, 95% CI [�5.66 4.55] for subject 4, n = 387

trials; �2.25�, 95% CI [�7.39 2.88] for subject 5, n = 553 trials;

�0.43�, 95% CI [�4.18 3.32] for subject 6, n = 699 trials; 1.30�,
95% CI [�2.75 5.35] for subject 7, n = 530 trials; �1.99�, 95%
CI [�7.59 3.62] for subject 8, n = 508 trials; 3.97�, 95% CI [0.57

7.38] for subject 9, n = 782 trials; 1.57�, 95% CI [�2.34 5.49] for
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subject 11, n = 656 trials; 1.38�, 95% CI [�3.97 6.72] for subject

12, n = 589 trials).

The Basic Bayesian observer makes the assumption that

subjects optimally read out the posterior (i.e., use its mode). We

relaxed this assumption with a Bayesian sampling observer in

which estimates were produced by sampling the posterior (Mor-

eno-Bote et al., 2011). This Bayesian sampling observer failed to

qualitatively describe subject estimate distributions as it pro-

duced a unimodal distribution (Figure 6L) similar to the Basic

Bayesian observer. The average AIC difference was 66, 95% CI

[�84 217] over subjects (Figure 6A, Bayes sampling), in favor of

switching for 6 out of 12 subjects (Figure 6B). We note that

when the subject estimate distributions were particularly noisy,

the Sampling observer could sometimes provide fits that quanti-

tatively appeared competitive with other models by placing a

single posterior over both prior and likelihood (Figure 6I), even

though it failed to reproduce the bimodality of the estimates.

Least-squares readout, a common rule that uses the posterior

mean rather than the mode, gave similar results. In particular, a

Basic Bayesian model with least-squares readout (Figure 6A,

Bayes LS) failed to outperform the Switching observer. The

average AIC difference was 363, 95% CI [85 640] over subjects,

in favor of switching for 9 out of 12 subjects (Figure 6B). Least-

squares readout variations of all othermodels (Figure 6A,models

with LS) either made similar predictions to the MAP readouts,

presumably because the posterior distributions were not signif-

icantly skewed (Figures 6G, 6I, and 6K), or would tend to lose

bimodality because of averaging across the full posterior rather

than picking the maximum value (Figure 6E).

Bimodal estimate distributions might also be produced by mo-

tion direction oblique effects (Ball and Sekuler, 1980; Gros et al.,

1998) similar to those that have been shown to explain biases in

orientationdiscrimination (Girshicket al., 2011).Wedefinedacar-

dinal direction prior as a mixture of four von Mises distributions

that peaked at the cardinal motion directions (0�, 90�, 180�,
270�), and this additional prior was integrated in each trial with

the priors learnt during the task and the sensory likelihood. We

fit a Basic Bayesian observer with cardinal priors and either a

maximumaposteriori readout or sampling readout to subject trial

estimates and found that the Switching observer quantitatively

(Figure 6A, Bayes MAP cardinal and Bayes sampling cardinal)

and qualitatively outperformed these two observers, which both

predicted more than two peaks for all motion directions. The

Switching observer fitted the data better than the Bayesian

observer with cardinal prior. The average AIC difference was

471, 95% CI [234 708] over subjects, in favor of switching for 11

out of 12 subjects (Figure 6B). The switching observer also fitted

better than the Bayesian sampling observer with cardinal prior.

The average AIC difference was 123, 95%CI [�44 290] over sub-

jects, in favor of switching for 6 out of 12 subjects (Figure 6B).

Bimodal distributions of estimates might be due to a switching

process not between prior and likelihood, but prior and posterior.

That is, an observer might engage in optimal Bayesian inference

on some trials but might strategically report the prior mean on

other trials when sensory uncertainty is too high. We tested an

observer model (Switching posterior) that chooses estimates at

the prior mode with probability, pprior , and otherwise combines

sensory likelihood and prior into a posterior and switches to
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Figure 7. Estimate Distributions for Spatial Orientation Task Also Show Bimodality

Subjects’ estimate the spatial orientation of a bar (A) whose sensory evidence strength is controlled by contrast and prior by the distribution of orientations shown

in a block. Estimate distributions (B) were bimodal and well fit (C and D) by a Switching observer with unstable prior mean (Switching sampling prior observer). All

conventions are the same as Figure 5. See also Figures S6 and S7 for subject-by-subject estimate distributions.
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the posterior mode (see STAR Methods, Equation 6). While this

Switching posterior model produces bimodal estimates and

does a reasonable job of accounting for the data, the original

Switching observer better fit the data (Figure 6A, Switching pos-

terior), outperforming the Switching posterior observer with an

average AIC difference of 21, 95% CI [�103 145] over subjects,

in favor of our Switching observer for 7 out of 12 subjects (Fig-

ure 6B). The Switching posterior observer predicted estimate

distribution peaks at the posterior, i.e., between the motion

direction and prior, which deviates from the peak at the motion

direction observed in our data (Figure 6M).

Bimodality of estimate distributions could be a result of a

particular strategy specific to having been exposed to blocks

of trials with very narrow priors. We therefore had five naїve sub-

jects perform the motion direction estimation task in which they

were only exposed to the wide (80� standard deviation) prior.

Subject-averaged estimate distributions (Figure S4A) and sub-
ject-by-subject estimate distributions (Figure S5) showed clear

bimodality. Quantitative fits of all the models showed that the

Switching observer outperformed all the other models (Figures

S4B and S4C). Thus, the Switching behavior was not a conse-

quence of exposure to very sharp prior distributions.

Switching between priors and sensory evidence based on their

strengths could be a generalized mechanism by which humans

can realize perceptual inference. We therefore asked whether

subjects would show similar switching behavior in other tasks.

We had nine new subjects perform a spatial orientation estima-

tion task that was similar to the motion direction estimation task

except rather than using a patch of random dots and have sub-

jects estimate motion direction, a thin bar filled with filtered noise

appeared in 36 different possible spatial orientations ranging

from 5� to 355� in steps of 10�, and subjects had to estimate its

spatial orientation following the same task procedures as in the

motion direction estimation task (Figure 7A). We manipulated
Neuron 97, 1–13, January 17, 2018 9
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the sensory likelihood by changing the contrast (15.6% and

100%) of the stimulus; the lower the contrast, the more uncertain

the spatial orientation should be. At low contrast (15.6%), sub-

jects’ data evidenced bimodal estimate distributions around the

prior mean and likelihood in subject-averaged data (Figure 7B)

and for individual subjects (Figures S6 and S7). However,

compared to thedirection estimation task,we found that subjects

in the spatial orientation task were less certain of the prior mean.

Thus, the Switching observer restricted to making estimates at

the prior mean did not fit as well as a Switching observer in which

instability to the prior mean was modeled by sampling the prior

(seeSTARMethods). ThisSwitching prior sampling observer out-

performed the Basic Bayesian observer with an average AIC dif-

ference of 525, 95% CI [150 900], in favor of Switching sampling

prior for 8 out of 9 subjects (Figures 7C and 7D). In the direction

estimation task, it outperformed all other models with average

AIC difference of 82, 95% CI [�41 206]; 103, 95% CI [�58 264];

149, 95% CI [67 231]; 205, 95% CI [131 279]; 445, 95% CI [241

649]; 477, 95% CI [269 684]; 478, 95% CI [262 693]; 511, 95%

CI [185 839]; 554, 95% CI [392 716]; 570, 95% CI [379 760];

627, 95% CI [403 850]; 657, 95% CI [377 939]; 911, 95% CI

[464 1,359]; 1,233, 95% CI [746 1,720]; 1,459, 95% CI [995

1,923], for Switching, Switching posterior, Bayes sampling,

Bayes sampling cardinal, Bayes LS, Bayes LS tailed prior, Bayes

MAP, Bayes MAP tailed LLH and Prior, Bayes MAP cardinal,

Bayes MAP tailed prior, Bayes LS tailed LLH and Prior, Bayes

LS tailed LLH, Bayes MAP tailed LLH, Bayes LS motion energy

LLH, and Bayes MAP motion energy LLH, respectively.

DISCUSSION

We used a motion direction estimation task in which we manip-

ulated motion strength and motion direction distributions to

test whether humans combine prior knowledge and sensory

evidence into perceptual judgments optimally as prescribed by

a Basic Bayesian observer. We found that a Switching observer,

which approximates optimal Bayesian integration but switches

between prior mean and sensory evidence, best accounted for

subjects’ data compared to other models.

In agreement with statistical optimality, when evidence was

weak (low motion coherence) and prior strong (narrow motion

direction distribution), subject’s average estimates were biased

toward the prior mean and the bias increased when priors

became stronger and sensory evidenceweaker, supporting find-

ings from motion perception (Chalk et al., 2010; Hanks et al.,

2011) and sensorimotor tasks (Berniker et al., 2010; Körding

and Wolpert, 2004; Tassinari et al., 2006; Vilares et al., 2012).

Furthermore, we confirmed the Bayesian predictions that esti-

mate variability should decrease when prior and evidence

become stronger, in line with previous findings that the variability

of human motion direction estimates increases when stimulus

contrast becomes lower (Chalk et al., 2010) and that human

time interval judgments are less variable when time interval

distributions become narrower (Jazayeri and Shadlen, 2010).

However, in apparent contradiction to the prediction of a Basic

Bayesian observer, subject estimate distributions showed two

peaks: at the prior mean and at the actual motion direction.

We note that this observation was possible because the estima-
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tion task that we used allowed us to see the full distributions of

estimates that would have been obscured by a two-alternative

forced choice task. We developed a Switching observer that

could account for this finding by choosing between estimates

from the prior mean or evidence based on their relative

strengths. The Switching observer not only provided better qual-

itative and quantitative fits to estimate distributions than the

Basic Bayesian observer or recency heuristics (Fischer and

Whitney, 2014; Körding and Wolpert, 2004; Raviv et al., 2012;

Wolpert et al., 1995), but could also approximate average

estimate mean and variability. We showed that the estimation

bimodality apparent in the motion direction estimation task

generalized to a spatial orientation estimation task, for which

the Switching observer with instability in the prior estimate pro-

vided a better account of subject estimates than the Basic

Bayesian observer.

Our study substantiates other reports that subjects can learn

quickly and accurately about both the prior mean and its

strength. Our analysis showed that subjects could learn prior

strengths quickly and stably within 100 trials, in line with previous

works (Berniker et al., 2010; Chalk et al., 2010; Krishnamurthy

et al., 2017). The Switching observer best fit prior strengths, sug-

gesting that priors were learnt accurately, which supports previ-

ous assumptions of optimality in prior representation (Berniker

et al., 2010; Tenenbaum et al., 2011) and the idea that people

can learn and operate on an accurate representation of priors

(Chalk et al., 2010; Fetsch et al., 2013; Girshick et al., 2011; Grif-

fiths and Tenenbaum, 2006; von Helmholtz, 1924; Knill and

Richards, 1996; Körding and Wolpert, 2004; Krishnamurthy

et al., 2017; Stocker and Simoncelli, 2006; Weiss et al., 2002).

That subjects’ behavior was quickly and stably affected by the

distribution of trials in a session demonstrates that they have

access to information about the strength of the prior needed to

make optimal decisions according to Bayesian theory. Indeed,

the Switching observer model fits suggest that the width of the

learned priors were reasonably accurate. Therefore, the devi-

ance from the expectation of the Basic Bayesian observer that

we found in the bimodality of estimate distributions was not

due to an inability to correctly learn and use information about

prior strength. The Switching model suggests that subjects

can use prior strength in a sophisticated and sensible way—

biasing choices across trials more toward the prior mean when

they are sure of the prior and more toward the presented direc-

tion when they are uncertain of the prior.

That the Switching observer fit the behavioral data better than

all the Bayesian observers we tested should not be taken as

evidence against our subjects using a Bayesian strategy per

se. While model comparison statistics and qualitative assess-

ment all point to the Switching observer as being the best

description of the estimation behavior, a few Bayesian observers

come close. In particular, the Switching posterior observer

would suggest that observers mandatorily form a posterior on

some trials but, on other trials, give up and choose the prior.

This observer could be construed as a lazy Bayesian, heuristical-

ly choosing the prior to avoid the cost of computing the

full posterior when appropriate. Alternatively, a hierarchical

Bayesian observer could be formulated in which perceptual

judgments are determined by hierarchical beliefs, or hyper-priors
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(Lee and Mumford, 2003; Sato et al., 2007; Tenenbaum et al.,

2011) that motion directions were drawn from either a uniform

or a peaked distribution at each trial, with probabilities deter-

mined by the ratio of likelihood and prior strengths. This would

effectively amount to a reformulation of our Switching observer

in Bayesian terminology. Regardless of these alternative ac-

counts, or future efforts that might uncover better models for

the bimodality in our data, our results clearly document bimo-

dality of estimates that are at odds with the standard, basic

Bayesian observer.

Some estimation behaviors appear to deviate from optimal but

still might be the consequence of optimal considerations. For

example, biased estimates of direction of motion could result

from optimal read out of neural populations (Jazayeri and Mov-

shon, 2007; Wei and Stocker, 2015). Estimates repelled rather

than attracted to the prior can be accounted for by asymmetric

likelihood functions (Wei and Stocker, 2015) that could be the

result of neural tuning functions whose statistics are matched

to those of the environment (Ganguli and Simoncelli, 2010). We

have similarly explored different forms of likelihood and prior

distributions, namelymixtures of uniform and vonMises distribu-

tions, and found that while these could produce bimodal esti-

mate distributions, the Switching model provided better fits of

the data. We cannot preclude the possibility that there may be

some distributional form that would allow a Bayesian model

with multiplicative integration to better explain the data. None-

theless, the Switching model demonstrates that it is possible

to approximate the summary statistics of a Bayesian observer

without multiplicative integration and match the actual estimate

distributions produced by human observers.

The Switching observer could be implemented in the brain by

probabilistic population codes (Beck et al., 2008; Ma et al., 2006;

Pouget et al., 2013) or through representations of priors or ex-

pectancy (Girshick et al., 2011; Gorlin et al., 2012; Kok et al.,

2013, 2012; Summerfield and Koechlin, 2008; Vintch and Gard-

ner, 2014; Yang et al., 2012) and be less costly than full Bayesian

integration. Bayesian integration requires computing the product

of likelihood and prior probabilities over a large number of hypo-

thetical stimulus states, which has been proposed to occur

through the summation of two neural population responses

(Ma et al., 2006). Switching, however, provides a mechanism

of inference without the costs of integration: the brain only needs

to read out the neurons that show the greatest responses from

the two populations instead of integrating all neurons’

responses.

Optimal and heuristic solutions are not mutually exclusive

options. Thus, our results do not imply that statistically optimal

inference behaviors can never be achieved by humans. Indeed,

in different tasks and contexts, it has been proposed that

humans use a wide variety of strategies with some being char-

acterized as heuristic (Gigerenzer and Gaissmaier, 2011; Nas-

sar et al., 2010; Rahnev and Denison, 2016; Raviv et al.,

2012; Tversky and Kahneman, 1974; Vul et al., 2014; Wilson

et al., 2013) and others as statistically optimal (Ernst and Banks,

2002; Girshick et al., 2011; Jazayeri and Shadlen, 2010; Körding

and Wolpert, 2004; Marr, 1982; Najemnik and Geisler, 2005;

Nassar et al., 2010; Rahnev and Denison, 2016; Stocker and Si-

moncelli, 2006; Vul et al., 2014; Wei and Stocker, 2015; Weiss
et al., 2002; Wilson et al., 2013). Humans may use different heu-

ristics in different tasks based on the adaptive advantage that

they provide in different environments (Gigerenzer and Gaiss-

maier, 2011). For example, one would gain from relying on the

previous stimulus in a volatile environment (Fischer and Whit-

ney, 2014; Raviv et al., 2012; Summerfield et al., 2011; Wilson

et al., 2013) while acquiring a prior over stimulus history and us-

ing it will reduce average estimate error when the environment

is stable (Girshick et al., 2011; Stocker and Simoncelli, 2006;

Summerfield et al., 2011; Wei and Stocker, 2015). When the

space of hypothetical stimuli relevant to a task becomes too

large or the shape of the prior probability distribution over that

space becomes too complex, one might have to sample the

posterior, thus reducing the cost of the computation (Vul

et al., 2014). What drives the brain to select a particular strategy

may depend on processing constraints among which the

complexity of prior features might play an important role (Acerbi

et al., 2014).

The switching behavior that we have documented here sug-

gests that behaviors can have qualities consistent with both

optimal theory and heuristics; across trials, mean and standard

deviation of estimates matched well with optimal predictions

despite the fact that closer examination showed behavior that

switched between prior and likelihood. More generally, human

behavior may best be understood in a framework that views

the goals of behavior as being derived by optimality theory but

constraints of implementation playing an important role in deter-

mining actual behavior (Simon, 1955, 1979). Rather than viewing

optimal and heuristic theories as being in apparent tension,

viewed together they give a more complete understanding of

the forces that shape human behavior.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Behavioral data This paper https://doi.org/10.17632/nxkvtrj9ps.1

Software and Algorithms

MATLAB MathWorks Matlab_R2013b

R R Development Core Team (2008) http://www.R-project.org

Custom code (experiment, model, analyses) This paper https://github.com/steevelaquitaine/projInference
CONTACT FOR REAGENT AND RESOURCE SHARING

All resources, including data and codes used for the analyses on this paper, are publicly available (see Data Software Availability and

Key Resources Table). Further information and requests for resource sharing should be directed to and will be fulfilled by the Lead

Contact, Justin L. Gardner (jlg@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Twelve healthy adults (3 female, age 29 - 40) with normal or corrected-to-normal vision participated in themotion direction estimation

study, five other healthy adults (3 females, age 18 to 40) participated in the second motion direction study with only the 80� prior and
nine other healthy adults (6 females, age 19 - 25) participated in the spatial orientation study. Experimental procedures were

approved in advance by the RIKEN Functional MRI Safety and Ethics Committee and by the Stanford University Institutional Review

Board. All subjects provided informed written consent before participating in experiments. All subjects except one, the first author

(subject 1), were not aware of the purpose of the study.

METHOD DETAILS

Stimuli
Motion stimuli consisted of fields of white dotsmoving on a dark background in one of 36 directions (5 to 355� in steps of 10�) andwith

one of threemotion coherences (6, 12 and 24%). Individual dots had a diameter of 3 pixels (0.1�) and were presented with a density of

16.7 dots/(�)2 within a 5� diameter circular aperture. On the first video frame of motion presentation, dots were randomly positioned

within the aperture. On each subsequent video frame, 6, 12 or 24% of the dots were randomly picked and displaced in the same

direction by 0.028� (speed of 2.8�/sec), while the remaining dots moved in random directions. Dots that moved outside the aperture

were placed at the opposite side of aperture.

Throughout each trial a gray circular fixation point with a radius of 0.2� was shown at the location of the center of the aperture.

A circular fixation point was used instead of a fixation cross to prevent subjects from using the vertical and horizontal axes of the

cross as references to estimate motion direction (Berniker et al., 2010; Rauber and Treue, 1998).

Visual stimuli were generated using MGL (http://justingardner.net/mgl) running on MATLAB (The MathWorks, Inc., Natick, MA,

USA) and presented on a CRT monitor (Trinitron 21-inch flat screen; Dell Computer Company). The monitor had a resolution of

1280 3 960 pixels, a refresh rate of 100 Hz, was placed 50.5 cm from the subject and had a linearized gamma.

Motion Direction Estimation Task
Subjects viewed the motion stimuli and had to report motion direction in repeated trials (Figure 1A). Subjects were instructed to

estimate themotion direction as fast and accurately as possible. At trial start subjects fixated the central gray dot and had tomaintain

fixation throughout the trial. After 1 s, a motion stimulus appeared for 0.3 s (motion phase). Subjects then had 5 s to report the direc-

tion of motion by adjusting the orientation of a line with an electronic paddle wheel (response phase) until it matched their perceived

direction and then press ‘‘1’’ on a keyboard. They were then provided with a brief visual confirmation of their estimated direction in

which the line became red for 0.1 s (confirmation phase). At trial end, the true motion direction was displayed (green line displayed for

0.1 s at feedback phase). Subjects were not explicitly told whether their response was correct or not.
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Priors and sensory likelihood were independently manipulated in the task. Priors were manipulated in each experimental block of

�200 trials by randomly drawing motion directions from one of four discrete von Mises distributions centered on 225 degrees with

different widths (concentrations were 33.3, 8.7, 2.8, 0.7 equivalent to 10, 20, 40, and 80� of standard deviation). Each block of trials

therefore had the same prior mean, but different strength of priors. The strength of sensory evidence was manipulated on a trial-by-

trial basis by displaying the motion stimulus on each trial with a pseudo-randomly selected motion coherences of 6, 12 or 24%. Each

experimental session contained four to five pseudo-randomly selected blocks and all subjects performed at least 5 sessions (> 1000

trials per prior) of the task (8, 8, 9, 5, 6, 7, 6, 6, 8, 6, 6, 6 sessions for subjects 1 to 12 respectively) to ensure that priors were well learnt

(Abrahamyan et al., 2016; Berniker et al., 2010; Fr€und et al., 2014). Sessions were performed on separate days.

Motion coherences and durations were chosen to encourage rapid learning of priors while avoiding potential confounds that might

bias subject estimates. Motion stimuli were displayed for a short duration of 0.3 s so that even with signal integration over time the

sensory evidence would be sufficiently weak enough to reveal prior-induced biases (Fischer and Whitney, 2014; Rao et al., 2012;

Raviv et al., 2012; Verstynen and Sabes, 2011). The true motion directions were displayed at the end of each trial to help subjects

quickly learn the experimental priors. Importantly, we avoided reward-induced biases by not delivering reward feedback whichmight

interfere with prior learning. We note that the initial position of the response line was randomizing on each trial to prevent bias. To

minimize potentially confounding biases induced by involuntary eye movement we used slow motions (2.8�/sec).
Subjects were instructed as follows: ‘‘The basic task is

d Fixate and then view a motion of noisy dots.

d Report the direction you saw as best as possible, as accurately as possible, and as fast as possible by adjusting the wheel.

Press keyboard button 1 when you have made a choice. You have a maximum of 5 s to report your choice.

d Then your response will be confirmed (green line).

d You will then get feedback about the true direction of the motion (red line).

Important !!

d Please fixate the fixation point during the entire experiment.

d Your objective is to estimate and report the direction of the motion as best as possible.

d In the ideal case, your choice (green line) will match perfectly the feedback (true direction of the motion).’’
Spatial Orientation Task
The spatial orientation task was similar to the motion direction estimation task except a thin bar filled with filtered noise appeared for

20 ms in one of 36 different possible spatial orientations (5� to 355� in 10� steps) and with one of two possible contrasts (15.6% and

100%) on a gray background rather than a patch of white random dots. The stimulus noise was generated by filling a 2.5� radius,
5� angle span wedge with random intensities low pass-filtered with a 2-D Gaussian filter (30� std, centered at frequency zero).

Analyses
All computations were done in the circular space of directions. Prior and likelihoods were modeled as Von Mises distributions of the

following form:

Vðq;m; kÞ= ek cosðq�mÞ�k

2pI0ðkÞ (1)

where q is the circular space of directions, m and k are the mean and strength (or concentration parameter) of the von Mises and I0 is

the modified Bessel function of order 0. We note that when the concentration parameter becomes large, the von Mises equation be-

comes numerically unstable, so we used the form above (with �k in the numerator) and normalized to insure that the distributions

summed to one. The concentration parameters of the von Mises distributions were converted into standard deviations, s, as follows:

s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX360
q= 1

pðfðq;mÞÞfðq;mÞ2
vuut (2)

where fðq;mÞ are the signed angular distances between the displayed directions q and the mean m of the von Mises distributions. All

probability distributions were computed over directions ranging from 1 to 360� discretized to 1�. We chose the vonMises distribution

because it is regarded as the circular analog of the Gaussian distribution (Forbes et al., 2011; Moreno-Bote et al., 2011) which is a

popular choice for modeling the shape of the sensory likelihood because of mathematical convenience (Ball and Sekuler, 1980; Ernst

and Banks, 2002; Ghahramani et al., 1997; Gros et al., 1998; Weiss et al., 2002). Displayed directions and direction estimates were

expressed as signed angular distances from the prior mean (225�, e.g., Figure 3A).
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Basic Bayesian Observer Model
Following Girshick et al. (2011), the Basic Bayesian observer made maximum a posteriori estimates of motion direction from a dis-

tribution formed by multiplying prior and likelihood distributions and these estimates were assumed to be corrupted by motor noise

and lapses. Each trial’s displayed direction qtrue can produce sensory evidence qe with probabilities pðqe j qtrueÞ described by a von

Mises distribution Vðqe; qtrue; keÞ centered on qtrue, with concentration ke. Each trial is modeled as a draw qei from the evidence dis-

tribution where i is the trial number, e.g., qe1 = 45� (gray distribution, Figure 2A). The sensory likelihood for that trial, pðqei j qtrueÞ was a

von Mises distribution with the same concentration parameter as the evidence distribution centered on the draw qei for that trial from

the evidence distribution.We assumed that during each prior block, subjects formed a prior belief about the stimulus coherentmotion

directions and formalized the ‘‘learnt’’ prior pðqtrueÞL as a von Mises distribution with mean qmprior
set at the experimental prior’s true

mean 225�, and concentration kprior fitted to the data (brown distributions, Figure 2A). The observer multiplicatively integrates the

sensory likelihood and the learnt prior into a posterior pðqtrue j qeiÞ (pink distributions) which is biased toward the strongest distribution

(top: likelihood, bottom: prior). Thus, more generally, for a trial in which any sensory evidence qei was sampled from the evidence

distribution, the posterior is given by:

p
�
qtrue j qei

�
=
p
�
qei

�� qtrue�pðqtrueÞL
p
�
qei

� (3)

and the posterior mode was taken to be the predicted percept:

qp = argmax
qtrue

�
p
�
qtrue j qei

��
(4)

From the equations abovewe can compute pðqp
�� qtrueÞwhich is the distribution of percepts qp themodel would generate given qtrue.

Ourmodel then assumes that the percepts qp are corrupted bymotor noise and lapses to generate the distribution of actual estimatesbq.Wemodeled lapses as random estimationwith probability pr andmotor noisewas described as a vonMises probability distribution

with mean 0 and strength km. The distribution of estimates for a given motion direction was given by:

p
�bq �� qtrue�=V

�bq; 0; km� �
h
ð1� prÞpðqp

�� qtrueÞ+ pr

360

i
(5)

where � denotes the discrete circular convolution.

We separately fitted the model to subject trial estimates with a maximum likelihood procedure. We used the Nelder-mead algo-

rithm to search for the model parameters that minimized the negative sum of the log probability of the model generating all subject

estimates. The results hold when fitting the data with the covariance matrix adaptation evolution strategy algorithm (CMA-ES; Chalk

et al., 2010; Hanks et al., 2011; Hansen and Kern, 2004) which can fit the data better than Nelder-Mead when the objective function

space is noisy and ill-conditioned, that is when the negative log likelihood has many local maxima. This technique was useful for

models described below where there are random fluctuations in the distribution of the stimulus dot directions from trial-to-trial.

The model had nine fit parameters: three likelihood strengths, ke, that were allowed to vary with motion coherence, four prior

strengths, kp, that varied with experimental prior strength, pr and km. The model predictions of estimate mean and variability are

the circular mean and circular standard deviation (Figures 3A and 3B) of pðbq �� qtrueÞ (black curves, Figure 4).

Prior Learning Model
We modified the Basic Bayesian observer by adding a learning rate parameter, t, that allowed us to fit how fast prior strengths were

learnt within each prior block (kprior were replaced by kpriorð1� e�t=tÞ).

Switching Observer Model
The Switching observer was identical to the Basic Bayesian observer, except that rather than forming a posterior by multiplying prior

and likelihood, the observer switched between prior mean and evidence based on their relative strength. Specifically, the probabil-

ities pprior and pe that the percepts were respectively drawn from the prior mean and the sensory evidence distribution were:

pprior =
kprior

kprior + ke
and pe = 1� pprior

On a small proportion of trials pr the observer’s percept was set to a randomdirection and the resulting distribution of percepts was

convolved with motor noise formalized as a von Mises distribution of concentration km. The probability of the estimates given the

displayed motion direction was thus:

p
�bq �� qtrue�=V

�bq;0; km� �
h
ð1� prÞ

�
pepðqe j qtrueÞ+ppriord

�
qp � qmprior

��
+

pr

360

i
(7)

where d() is a delta function over percepts qp that peaks at the prior mean qmprior
.

We also tested two variations of the Switching observer. One which we call the Switching prior sampling observer, in which the

prior direction was not taken as a delta function as above, but instead was sampled from the prior distribution, thus allowing there
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to be uncertainty about the exact prior. Another variation of the Switching observer, which switches but uses Bayesian computations,

the Switching posterior observer, was also tested. The Switching posterior combines sensory likelihood and prior into a posterior and

switches between the posterior mode and the prior mean.

Bayesian Models with Variations in Prior
We tested models based on the Basic Bayesian observer in which we relaxed the assumption that the prior was a von Mises distri-

bution. We called this model the Bayesian observer with long-tailed prior. For this observer, any direction has some small probability

of occurring. Priors were thus formalized as mixtures of a von Mises and a circular uniform distribution. The model had 11 fit param-

eters (three likelihood strengths ke, four prior strengths kprior , a uniquemixture coefficient for all priors that controlled the weight of the

tail relative to the von Mises, utail, motor precision km, and lapse rate pr ).

Bayesian Models with Variations in Likelihood
We tested several plausible variations in the likelihood representation that could allow the Basic Bayesian observer to produce

bimodal distributions. We modeled the stochasticity in the stimulus to obtain a more accurate description of the stimulus, which

in effect relaxes the simplifying assumption that evidence distributions were von Mises-shaped and peaked at stimulus displayed

motion direction. Insteadwe used the distribution of stimulus individual dot directions to calculate an evidence distribution.We called

the model the Bayesian observer with long-tailed likelihood as the derived evidence distributions and sensory likelihood displayed

long tails. The motion coherence of the stimulus was controlled by moving a percentage of the dots (6, 12 or 24%) in the same di-

rections while other dots were moved in random directions. At each trial, the stimulus displayed on the screen was composed of N

dots (N = 328), that moved in the directions qi where i is an integer from 1 to N. The directions qi were randomly sampled from the

mixture of a uniform (the distribution of the directions of the incoherent dots) and a delta function (the proportion of dots that moved

in the stimulus coherent direction) such that the probability of the dot direction qi given the coherent motion direction qtrue with

the coherence c is:

pðqi j qtrue; cÞ= cdðqi � qtrueÞ+ ð1� cÞ
360

(8)

where d() is a delta function that peaks at the stimulus coherent motion direction, qtrue. Because of sensory noise, each single dot

direction qi is considered to provide sensory evidence distribution pðqei j qiÞ which can be described by a von Mises distribution

Vðqei; qi; kÞ that peaks at the dot direction qi and has strength k. Thus the evidence distribution for each dot is computed as:

p
�
qei

�� qtrue; c�= X
qi

p
�
qei

�� qi�pðqi j qtrue; cÞ
= cV�qei; qtrue; k�+ 1� c

360

(9)

Given the N sensory evidence that were drawn, the sensory likelihood under the hypothesized coherent motion directions qtrue of

the stimulus is inferred by integrating the probability of the sensory evidence over the N dots:

pðqe j qtrue; cÞ=
YN= 328

i = 1

p
�
qei

�� qi; c�

=
YN= 328

i = 1

�
cV�qei; qtrue; k�+ 1� c

360

	 (10)

and the sensory likelihood inherits the long tails of the distribution fromwhich the dot directions were sampled (Equation 9). The sen-

sory likelihood and the prior were multiplicatively combined into a posterior, which is bimodal due to the sensory likelihood’s tail, and

the percepts were produced by reading out the posterior mean. The percepts were then converted into estimates that can deviate

from the percepts due to motor noise and lapses. The model had seven fit parameters (the strength of evidence for each dot k, four

prior strengths kprior , motor precision km and lapse rate pr ).

The Bayesian observer with long-tailed prior and likelihood, multiplicatively combined long-tailed integrated likelihood with long-

tailed prior into a bimodal posterior, and readout posterior mean as percept. The model has eight fit parameters (the strength of

evidence for each dot k, four prior strengths kprior , a unique mixture coefficient that controlled prior tail weight relative to von

Mises, utail, motor precision km, and lapse rate pr ).

We also constructed a model variation in with sensory likelihood was derived from motion-energy filters (Adelson and Bergen,

1985). We constructed 24 motion-energy filters with direction peak selectivity ranging from 0� to 345� in steps of 15�. Filters were

tuned for speed near the stimulus speed of 2.8�/secwith peak temporal frequency selectivity of 1 and 1.4 cycles/sec and peak spatial

frequency selectivity of 0.46 and 0.5 cycle/� producing peak speed selectivity of 2; 2.17; 2.8; 3.04�/sec and filter mean responses

were averaged over time. Four thousands random dot stimuli (all in the same direction, different directions were inferred based

on symmetry) for each of the three coherences used in the experiment (6, 12 and 24%) were simulated. Motion-energy filter
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responses to these stimuli were converted into direction evidence with population vector decoding which weights each filter’s

preferred motion direction by its response magnitude (Georgopoulos et al., 1993). Sensory likelihoods were then derived from the

distribution of different motion direction evidence across different random dot stimuli.

Sampling Bayesian Observer Model
The sampling Bayesian observer represents and integrates the sensory likelihood and the prior in the same way as the Basic

Bayesian observer, but the percepts are not created by reading out the posterior mode but by randomly sampling the posterior (Ber-

niker et al., 2010; Körding andWolpert, 2004; Moreno-Bote et al., 2011; Tassinari et al., 2006; Vilares et al., 2012). This model has the

same nine fit parameters as the Basic Bayesian model.

Bayesian Models with Least-Square Readout
Model variations of Basic Bayesian and other observers were implemented with a least-squares readout, which consists in reading

out the circular mean of the posterior instead of its mode.

Bayesian Models with Learnt and Cardinal Priors
This model was identical to the Basic Bayesian observer, except that it also used a prior over cardinal directions pðqtrueÞc. The addi-

tional prior was a mixture of four equally weighted von Mises which peaked at 0, 90, 180 and 270�, with the same concentration

parameter kc which was a fit parameter (Chalk et al., 2010; Girshick et al., 2011). Thus, for a trial i in which any sensory evidence

qei was sampled from the evidence distribution, the two priors and the likelihood were integrated as follows:

p
�
qtrue j qei

�
=
p
�
qei

�� qtrue�pðqtrueÞLpðqtrueÞc
p
�
qei

� (11)

Model Fit Convergence
We used the following nine sets of initial parameters to maximize the likelihood of convergence of parameter estimates for all ob-

servers. We manually adjusted parameters to match each model estimate distributions with the actual estimates distributions for

each subject. We then also chose all eight combinations of prior and likelihood widths that were eight times stronger or weaker

than themanually adjusted parameters.We also chose another set in which prior and sensory likelihoodwidths were all set to a single

value: the average of the manually fit prior and likelihood widths. We started fitting with each of these ten initial starting values and

used the Nelder-Mead algorithm to maximize the log-likelihood of each observer model producing the measured data. The fits ob-

tained for all initial parameters convergedwhen changing the fit parameters during theNelder-Mead search did not result in change in

the log likelihood and fit parameters above the very strict function and parameter tolerances of 1e-4. Using a stricter tolerance did not

substantially change the fit, while more relaxed tolerance worsened the fit. We also fitted the data with a second non-linear optimi-

zation algorithm: the covariance matrix adaptation search algorithm (CMAES) which produced similar results.

Model Comparison
Model comparisons were made using Akaike information criterion (AIC) which accounts for overfitting by penalizing models with

greater number of parameters (Akaike, 1974; Bishop, 2006). AIC was calculated as follows:

AIC= 2
h
n� log

�
p
�bq ��model

��i
(12)

where n is the number of fit parameters of the model and pðbq ��modelÞ is the likelihood of the trial data given the model best fit pa-

rameters. We calculated DI which is the AIC difference between any two models for all subjects. The reported AIC difference was

always calculated by subtracting the Switching or Switching sampling prior observer’s AICs (such that positive differences indicate

more evidence for the Switching observer), except when the Basic Bayesian observer’s fit was compared to the maximum likelihood

observer’s fit. In that case, the Basic Bayesian observer’s AIC was subtracted from the maximum likelihood AIC. A difference of 2 is

equivalent to adding another parameter to the model.

QUANTIFICATION AND STATISTICAL ANALYSIS

Two-tailed one sample Wilcoxon tests were used to compare the median over subjects, n = 12, of the prior strengths parameters

fitted by the Switching observer to subject’s data to veridical strength. A non-parametric test was chosen because fitted prior

strength values were not all normally distributed (two-tailed Lilliefors’ test with a statistical threshold a = 0.05).

Two-tailed Pearson correlation was used to compare the slopes of each subject’s estimated versus displayed directions for the

twelve prior x coherence conditions in the first hundred versus late hundred trials of prior blocks. The slopes were calculated for
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each task condition by pooling the first or last hundred trials of each prior block over all blocks and by fitting estimated versus dis-

played directions with a line. Two-tailed Pearson correlation coefficient r and p-value quantified for each subject how well the twelve

slopes calculated during early trials matched late trials slopes.

Confidence intervals were calculated as the DI ±1:96s
ffiffiffi
n

p
where s is the standard deviation of DI calculated over subjects and n is

the number of subjects.

DATA AND SOFTWARE AVAILABILITY

The data and the analysis scripts are available on https://github.com/steevelaquitaine/projInference and https://doi.org/10.17632/

nxkvtrj9ps.1.
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